CHAPTER 11
Molecular Orbital Theory: A Bridge Between Foundational and Advanced Inorganic Chemistry 611
Overview of the Chapter 611
11.1 Molecular Orbital Theory for Homonuclear Diatomic Molecules 612
11.2 Orbital Mixing in Homonuclear Diatomic Molecules: Bond Energies and Bond Lengths 621
11.3 Electronic Spectroscopy and Molecular Orbital Theory 626
11.4 Heteroatomic Diatomic Molecules and Ions 633
11.5 Molecular Orbitals for Selected Two- and Three-Dimensional High-Symmetry (D_{inh}, T_{d}, and O_{h}) Complexes and Molecules 640
11.6 d-Block Organometallic Compounds: The Role of σ-Donor, π-Donor, and π-Acceptor Ligands 649
11.7 Background Reading for Chapter 11 666
11.8 Exercises 666

CHAPTER 12
The Elements as Molecules and Materials 679
12.1 Elemental Substances: Structures and Physical Properties 680
12.2 Molecular Orbital Theory and Conductivity Properties of Linear Oligomers and Polymers of Elements 689
12.3 Allotropes of the Nonmetals 700
12.4 Metals and Alloys 710
12.5 Inorganic Materials That Are Structurally Related to Carbon Allotropes 722
12.6 Summary Overview of Relationships Among Ionic, Covalent, and Metallic Structures and Bonding 728
12.7 Background Reading for Chapter 12 730
12.8 Exercises 731

Appendix: Answers to Odd-Numbered Exercises A-1
Photo and Figure Credits C-1
Index I-1