Preface xi
To the Instructor xiii
To the Student: How to Study Thermodynamics xv
Acknowledgments xvii

CHAPTER 1 Probability, Distributions, and Equilibrium 1
1.1 Chemical Change 1
1.2 Chemical Equilibrium 2
1.3 Probability Is “(Ways of getting x)/(Ways total)” 2
1.4 AND Probability Multiplies 3
1.5 OR Probability Adds 3
1.6 AND and OR Probability Can Be Combined 4
1.7 The Probability of “Not X” Is One Minus the Probability of “X” 4
1.8 Probability Can Be Interpreted Two Ways 5
1.9 Distributions 6
1.10 For Large Populations, We Approximate 7
1.11 Relative Probability and Fluctuations 9
1.12 Equilibrium and the Most Probable Distribution 12
1.13 Equilibrium Constants Describe the Most Probable Distribution 12
1.14 Le Châtelier’s Principle Is Based on Probability 13
1.15 Determining Equilibrium Amounts and Constants Based on Probability 15
1.16 Summary 17

CHAPTER 2 The Distribution of Energy 21
2.1 Real Chemical Reactions 21
2.2 Temperature and Heat Energy 21
2.3 The Quantized Nature of Energy 22
2.4 Distributions of Energy Quanta in Small Systems 23
2.5 Calculating W Using Combinations 26
2.6 Why Equations 2.1 and 2.2 Work 28
2.7 Determining the Probability of a Particular Distribution of Energy 29
2.8 The Most Probable Distribution Is the Boltzmann Distribution 31
2.9 The Effect of Temperature 34
5.7 Using Bond Dissociation Energies to Understand Chemical Reactions 102
5.8 The “High-Energy Phosphate Bond” and Other Anomalies 103
5.9 Computational Chemistry and the Modern View of Bonding 105
5.10 Beyond Covalent Bonding 106
5.11 Summary 107

CHAPTER 6 The Effect of Temperature on Equilibrium 111
6.1 Chemical Reactions as Single Systems: Isomerizations 111
6.2 The Temperature Effect on Isomerizations 112
6.3 K vs. T for Evenly Spaced Systems 114
6.4 Experimental Data Can Reveal Energy Level Information 117
6.5 Application to Real Chemical Reactions 117
6.6 The Solid/Liquid Problem 119
6.7 Summary 120

CHAPTER 7 Entropy (S) and the Second Law 123
7.1 Energy Does Not Rule 123
7.2 The Definition of Entropy: $S = k \ln W$ 124
7.3 Changes in Entropy: $\Delta S = k \ln(W_2/W_1)$ 126
7.4 The Second Law of Thermodynamics: $\Delta S_{\text{universe}} > 0$ 126
7.5 Heat and Entropy Changes in the Surroundings: $\Delta S_{\text{sur}} = q_{\text{sur}}/T$ 127
7.6 Measuring Entropy Changes 128
7.7 Standard Molar Entropy: S° 129
7.8 Entropy Comparisons Are Informative 129
7.9 The Effect of Ground State Electronic Degeneracy on Molar Entropy 132
7.10 Determining the Standard Change in Entropy for a Chemical Reaction 134
7.11 Another Way to Look at ΔS 136
7.12 Summary 137

CHAPTER 8 The Effect of Pressure and Concentration on Entropy 141
8.1 Introduction 141
8.2 Impossible? or Just Improbable? 142
8.3 Ideal Gases and Ideal Solutions 143
8.4 The Volume Effect on Entropy: $\Delta S = nR \ln(V_2/V_1)$ 144
8.5 The Entropy of Mixing Is Just the Entropy of Expansion 145
8.6 The Pressure Effect for Ideal Gases: $\Delta S = -nR \ln(P_2/P_1)$ 147
8.7 Concentration Effect for Solutions: $\Delta S = -nR \ln([X]_2/[X]_1)$ 147
8.8 Adjustment to the Standard State: $S_x = S^\circ_x - R \ln P_x$ and $S_x = S^\circ_x - R \ln[X]$ 148
8.9 The Reaction Quotient: $\Delta_r S = \Delta_r S^\circ - R \ln Q$ 148
8.10 Solids and Liquids Do Not Appear in the Reaction Quotient 151
8.11 The Evaporation of Liquid Water 152
8.12 A Microscopic Picture of Pressure Effects on Entropy 153
8.13 Summary 155
 CHAPTER 9 Enthalpy (H) and the Surroundings 159
9.1 Heat Is Not a State Function 159
9.2 The Definition of Enthalpy: \(H = U + PV \) 160
9.3 Standard Enthalpies of Formation, \(\Delta_f H^\circ \) 161
9.4 Using Hess’s Law and \(\Delta_f H^\circ \) to Get \(\Delta_r H^\circ \) for a Reaction 162
9.5 Enthalpy vs. Internal Energy 165
9.6 High Temperature Breaks Bonds 166
9.7 Summary 167

 CHAPTER 10 Gibbs Energy (G) 171
10.1 The Second Law Again, with a Twist 171
10.2 The Definition of Gibbs Energy: \(G = H - TS \) 174
10.3 Plotting \(G \) vs. \(T \) (G–T Graphs) 176
10.4 Comparing Two or More Substances Using G–T Graphs 177
10.5 Equilibrium Is Where \(\Delta_r G = 0 \) 178
10.6 The “Low Enthalpy/High Entropy Rule” 178
10.7 A Quantitative Look at Melting Points: \(0 = \Delta_{fus} H - T_{mp} \Delta_{fus} S \) 179
10.8 The Gibbs Energy of a Gas Depends upon Its Pressure 180
10.9 Vapor Pressure, Barometric Pressure, and Boiling 182
10.10 Summary 185

 CHAPTER 11 The Equilibrium Constant (K) 191
11.1 Introduction 191
11.2 The Equilibrium Constant 193
11.3 Determining the Values of \(\Delta_r H^\circ \) and \(\Delta_r S^\circ \) Experimentally 195
11.4 The Effect of Temperature on \(K_{eq} \) 196
11.5 A Qualitative Picture of the Approach to Equilibrium 197
11.6 Le Châtelier’s Principle Revisited 198
11.7 Determining Equilibrium Pressures and Concentrations 200
11.8 Equilibration at Constant Pressure (optional) 203
11.9 Standard Reaction Gibbs Energies, \(\Delta_r G_T^\circ \) 204
11.10 The Potential for Change in Entropy of the Universe is \(R \ln K/Q \) 205
11.11 Beyond Ideality: “Activity” 206
11.12 Summary 207

 CHAPTER 12 Applications of Gibbs Energy: Phase Changes 211
12.1 Review 211
12.2 Evaporation and Boiling 212
12.3 Sublimation and Vapor Deposition 215
12.4 Triple Points 216
12.5 Critical Points and Phase Diagrams 217
12.6 Solubility: \(0 = \Delta_r H^\circ - T(\Delta_r S^\circ - R \ln[x_{sat}]) \) 220
12.7 Impure Liquids: \(S = S^\circ - R \ln x \) 224
12.8 Summary 229
CHAPTER 13 Applications of Gibbs Energy: Electrochemistry 235

13.1 Introduction 235
13.2 Review: Gibbs Energy and Entropy 235
13.3 Including Internal Energy and Electrical Work in the Big Picture 238
13.4 Electrical Work Is Limited by the Gibbs Energy 239
13.5 The Gibbs Energy Change Can Be Positive 240
13.6 The Electrical Connection: \(-\Delta G = Q_{\text{elec}} \times E_{\text{cell}} = I \times t \times E_{\text{cell}}\) 240
13.7 The Chemical Connection: \(Q_{\text{rxn}} = n \times F\) 242
13.8 Gibbs Energy and Cell Potential: \(\Delta G = -nFE_{\text{cell}}\) 243
13.9 Standard State for Cell Potential: \(E_{\text{cell},T}^\circ\) 244
13.10 Using Standard Reduction Potentials to Predict Reactivity 246
13.11 Equilibrium Constants from Cell Potentials:
\[0 = -nFE_{\text{cell},T}^\circ + RT \ln K\] 248
13.12 Actual Cell Voltages and the Nernst Equation:
\[-nFE_{\text{cell}} = -nFE_{\text{cell},T}^\circ + RT \ln Q\] 248
13.13 Detailed Examples 249
13.14 Summary 250

APPENDIX A Symbols and Constants 255

APPENDIX B Mathematical Tricks 273

APPENDIX C Table of Standard Reduction Potentials 275

APPENDIX D Table of Standard Thermodynamic Data (25°C and 1 bar) 279

APPENDIX E Thermodynamic Data for the Evaporation of Liquid Water 285

Answers to Selected Exercises 287
Index 293