Modern Physical Organic Chemistry
PART I: Molecular Structure and Thermodynamics

CHAPTER 1. Introduction to Structure and Models of Bonding 3
2. Strain and Stability 65
3. Solutions and Non-Covalent Binding Forces 145
4. Molecular Recognition and Supramolecular Chemistry 207
5. Acid–Base Chemistry 259
6. Stereochemistry 297

PART II: Reactivity, Kinetics, and Mechanisms

CHAPTER 7. Energy Surfaces and Kinetic Analyses 355
8. Experiments Related to Thermodynamics and Kinetics 421
9. Catalysis 489
10. Organic Reaction Mechanisms, Part 1:
Reactions Involving Additions and/or Eliminations 537
11. Organic Reaction Mechanisms, Part 2:
Substitutions at Aliphatic Centers and Thermal Isomerizations/Rearrangements 627
12. Organotransition Metal Reaction Mechanisms and Catalysis 705
Intent and Purpose 705
13. Organic Polymer and Materials Chemistry 753

PART III: Electronic Structure: Theory and Applications

15. Thermal Pericyclic Reactions 877
16. Photochemistry
17. Electronic Organic Materials 1001

APPENDIX 1. Conversion Factors and Other Useful Data 0000
2. Electrostatic Potential Surfaces for Representative Organic Molecules 0000
3. Group Orbitals of Common Functional Groups:
Representative Examples Using Simple Molecules 0000
4. The Organic Structures of Biology 0000
5. Pushing Electrons 0000
6. Reaction Mechanism Nomenclature 0000
List of Highlights 00
Preface 00
Acknowledgments 00
A Note to the Instructor 00

PART I
MOLECULAR STRUCTURE AND THERMODYNAMICS

CHAPTER 1: Introduction to Structure and Models of Bonding 3
Intent and Purpose 3
1.1 A Review of Basic Bonding Concepts 4
1.1.1 Quantum Numbers and Atomic Orbitals 4
1.1.2 Electron Configurations and Electronic Diagrams 5
1.1.3 Lewis Structures 6
1.1.4 Formal Charge 6
1.1.5 VSEPR 7
1.1.6 Hybridization 8
1.1.7 A Hybrid Valence Bond / Molecular Orbital Model of Bonding 10
Creating Localized σ and π Bonds 11
1.1.8 Polar Covalent Bonding 12
Electronegativity 12
Electrostatic Potential Surfaces 14
Inductive Effects 15
Group Electronegativities
Hybridization Effects
1.1.9 Bond Dipoles, Molecular Dipoles, and Quadrupoles 17
Bond Dipoles 17
Molecular Dipole Moments 18
Molecular Quadrupole Moments 19
1.1.10 Resonance 20
1.1.11 Bond Lengths 22
1.1.12 Polarizability 24
1.1.13 Summary of Concepts Used for the Simplest Model of Bonding in Organic Structures 26
1.2 A More Modern Theory of Organic Bonding 26
1.2.1 Molecular Orbital Theory 27
1.2.2 A Method for QMOT 28
1.2.3 Methyl in Detail 29
Planar Methyl 29
The Walsh Diagram: Pyramidal Methyl 31
"Group Orbitals" for Pyramidal Methyl 32
Putting the Electrons In—The MH$_3$ System 33
1.2.4 The CH$_3$ Group in Detail 33
The Walsh Diagram and Group Orbitals 33
Putting the Electrons In—The MH$_2$ System 33
1.3 Orbital Mixing—Building Larger Molecules 35
1.3.1 Using Group Orbitals to Make Ethane 36
1.3.2 Using Group Orbitals to Make Ethylene 38
1.3.3 The Effects of Heteroatoms—Formaldehyde 40
1.3.4 Making More Complex Alkanes 43
1.3.5 Three More Examples of Building Larger Molecules from Group Orbitals 43
Propene 43
Methyl Chloride 45
Butadiene 46
1.3.6 Group Orbitals of Representative π Systems: Benzene, Benzyl, and Allyl 46
1.3.7 Understanding Common Functional Groups as Perturbations of Allyl 49
1.3.8 The Three Center–Two Electron Bond 50
1.3.9 Summary of the Concepts Involved in Our Second Model of Bonding 51
1.4 Bonding and Structures of Reactive Intermediates 52
1.4.1 Carbocations 52
Carbenium Ions 53
Interplay with Carbonium Ions 54
Carbonium Ions 55
1.4.2 Carbanions 56
1.4.3 Radicals 57
1.4.4 Carbenes 58
1.5 A Very Quick Look at Organometallic and Inorganic Bonding 59
Summary and Outlook 61
EXERCISES 62
FURTHER READING 64

CHAPTER 2: Strain and Stability 65
Intent and Purpose 65
2.1 Thermochemistry of Stable Molecules 66
2.1.1 The Concepts of Internal Strain and Relative Stability 66
2.1.2 Types of Energy 68
Gibbs Free Energy 68
Enthalpy 69
Entropy 70
2.1.3 Bond Dissociation Energies 70
Using BDEs to Predict Exothermicity and Endothermicity 72
2.1.4 An Introduction to Potential Functions and Surfaces—Bond Stretches 73
Infrared Spectroscopy 77
2.1.5 Heats of Formation and Combustion 77
2.1.6 The Group Increment Method 79
2.1.7 Strain Energy 82
2.2 Thermochemistry of Reactive Intermediates 82
2.2.1 Stability vs. Persistence 82
2.2.2 Radicals 83
 BDEs as a Measure of Stability 83
 Radical Persistence 84
 Group Increments for Radicals 86
2.2.3 Carbocations 87
 Hydride Ion Affinities as a Measure of Stability 87
 Lifetimes of Carbocations 90
2.2.4 Carbanions 91
2.2.5 Summary 91

2.3 Relationships Between Structure and Energetics—Basic Conformational Analysis 92
2.3.1 Acyclic Systems—Torsional Potential Surfaces 92
 Ethane 92
 Butane—The Gauche Interaction 95
 Barrier Height 97
 Barrier Foldedness 97
 Tetraalkylethananes 98
 The \(g+g– \) Pentane Interaction 99
2.3.2 Basic Cyclic Systems 100
 Cyclopropane 100
 Cyclobutane 100
 Cyclopentane 101
 Cyclohexane 102
 Larger Rings—Transannular Effects 107
 Group Increment Corrections for Ring Systems 109
 Ring Torsional Modes 109
 Bicyclic Ring Systems 110
 Cycloalkenes and Bredt’s Rule 110
 Summary of Conformational Analysis and Its Connection to Strain 112

2.4 Electronic Effects 112
2.4.1 Interactions Involving \(\pi \) Systems 112
 Substitution on Alkenes 112
 Conformations of Substituted Alkenes 113
 Conjugation 115
 Aromaticity 116
 Antiaromaticity, An Unusual Destabilizing Effect 117
 NMR Chemical Shifts 118
 Polycyclic Aromatic Hydrocarbons 119
 Large Annulenes 119
2.4.2 Effects of Multiple Heteroatoms 120
 Bond Length Effects 120
 Orbital Effects 120

2.5 Highly-Strained Molecules 124
2.5.1 Long Bonds and Large Angles 124
2.5.2 Small Rings 125
2.5.3 Very Large Rotation Barriers 127

2.6 Molecular Mechanics 128
2.6.1 The Molecular Mechanics Model 129
 Bond Stretching 129
 Angle Bending 130
 Torsion 130
 Nonbonded Interactions 130
 Cross Terms 131

 Electrostatic Interactions 131
 Hydrogen Bonding 131
 The Parameterization 132
 Heat of Formation and Strain Energy 132
2.6.2 General Comments on the Molecular Mechanics Method 133
2.6.3 Molecular Mechanics on Biomolecules and Unnatural Polymers—“Modeling” 135
2.6.4 Molecular Mechanics Studies of Reactions 136

Summary and Outlook 137

EXERCISES 138
FURTHER READING 143

CHAPTER 3: Solutions and Non-Covalent Binding Forces 145

Intent and Purpose 145

3.1 Solvent and Solution Properties 145
3.1.1 Nature Abhors a Vacuum 146
3.1.2 Solvent Scales 146
 Dielectric Constant 147
 Other Solvent Scales 148
 Heat of Vaporization 150
 Surface Tension and Wetting 150
 Water 151
3.1.3 Solubility 153
 General Overview 153
 Shape 154
 Using the “Like-Dissolves-Like” Paradigm 154
3.1.4 Solute Mobility 155
 Diffusion 155
 Fick’s Law of Diffusion 156
 Correlation Times 156
3.1.5 The Thermodynamics of Solutions 160
 Chemical Potential 158
 The Thermodynamics of Reactions 160
 Calculating \(\Delta \text{H} \) and \(\Delta \text{S} \) 162

3.2 Binding Forces 162
3.2.1 Ion Pairing Interactions 163
 Salt Bridges 164
3.2.2 Electrostatic Interactions Involving Dipoles 165
 Ion–Dipole Interactions 165
 A Simple Model of Ionic Solvation — The Born Equation 166
 Dipole–Dipole Interactions 168
3.2.3 Hydrogen Bonding 168
 Geometries 169
 Strengths of Normal Hydrogen Bonds 171
 i. Solvation Effects 171
 ii. Electronegativity Effects 172
 iii. Resonance Assisted Hydrogen Bonds 173
 iv. Polarization Enhanced Hydrogen Bonds 174
 v. Secondary Interactions in Hydrogen Bonding Systems 175
CONTENTS

vi. Cooperativity in Hydrogen Bonds 175
Vibrational Properties of Hydrogen Bonds 176
Short–Strong Hydrogen Bonds 177
3.2.4 π Effects 180
 Cation–π Interactions 181
 Polar–π Interactions 183
 Aromatic–Aromatic Interactions (π Stacking) 184
 The Arene–Perfluoroarene Interaction 184
 π Donor–Acceptor Interactions 186
3.2.5 Induced-Dipole Interactions 186
 Ion–Induced-Dipole Interactions 187
 Dipole–Induced-Dipole Interactions 187
 Induced-Dipole–Induced-Dipole Interactions 188
 Summarizing Monopole, Dipole, and Induced-Dipole Binding Forces 188
3.2.6 The Hydrophobic Effect 189
 Aggregation of Organics 189
 The Origin of the Hydrophobic Effect 192
3.3 Computational Modeling of Solvation 194
 3.3.1 Continuum Solvation Models 196
 3.3.2 Explicit Solvation Models 197
 3.3.3 Monte Carlo (MC) Methods 198
 3.3.4 Molecular Dynamics (MD) 199
 3.3.5 Statistical Perturbation Theory / Free Energy Perturbation 200
Summary and Outlook 201
EXERCISES 202
FURTHER READING 204

CHAPTER 4: Molecular Recognition and Supramolecular Chemistry 207
Intent and Purpose 207
4.1 Thermodynamic Analyses of Binding Phenomena 207
4.1.1 General Thermodynamics of Binding 208
 The Relevance of the Standard State 210
 The Influence of a Change in Heat Capacity 212
 Cooperativity 213
 Enthalpy–Entropy Compensation 216
4.1.2 The Binding Isotherm 216
4.1.3 Experimental Methods 219
 UV/Vis or Fluorescence Methods 220
 NMR Methods 220
 Isothermal Calorimetry 221
4.2 Molecular Recognition 222
4.2.1 Complementarity and Preorganization 224
 Crowns, Cryptands, and Spherands—Molecular Recognition with a Large Ion–Dipole Component 224
 Tweezers and Clefts 228
4.2.2 Molecular Recognition with a Large Ion Pairing Component 228
4.2.3 Molecular Recognition with a Large Hydrogen Bonding Component 230
 Representative Structures 230
 Molecular Recognition via Hydrogen Bonding in Water 232
4.2.4 Molecular Recognition with a Large Hydrophobic Component 234
 Cyclodextrins 234
 Cyclophanes 234
 A Summary of the Hydrophobic Component of Molecular Recognition in Water 238
4.2.5 Molecular Recognition with a Large π Component 239
 Cation–π Interactions 239
 Polar–π and Related Effects 241
4.2.6 Summary 241
4.3 Supramolecular Chemistry 243
4.3.1 Supramolecular Assembly of Complex Architectures 244
 Self-Assembly via Coordination Compounds 244
 Self-Assembly via Hydrogen Bonding 245
4.3.2 Novel Supramolecular Architectures—Catenanes, Rotaxanes, and Knots 246
 Nanotechnology 248
4.3.3 Container Compounds—Molecules within Molecules 249
Summary and Outlook 252
EXERCISES 253
FURTHER READING 256

CHAPTER 5: Acid–Base Chemistry 259
Intent and Purpose 259
5.1 Bronsted Acid–Base Chemistry 259
5.2 Aqueous Solutions 261
5.2.1 pK_a 261
5.2.2 pH 262
5.2.3 The Leveling Effect 264
5.2.4 Activity vs. Concentration 266
5.2.5 Acidity Functions: Acidity Scales for Highly Concentrated Acidic Solutions 266
5.2.6 Super Acids 270
5.3 Nonaqueous Systems 271
5.3.1 pK_a Shifts at Enzyme Active Sites 273
5.3.2 Solution Phase vs. Gas Phase 273
5.4 Predicting Acid Strength in Solution 276
5.4.1 Methods Used to Measure Weak Acid Strength 276
5.4.2 Two Guiding Principles for Predicting Relative Acidities 277
5.4.3 Electronegativity and Induction 278
5.4.4 Resonance 278
5.4.5 Bond Strengths 283
5.4.6 Electrostatic Effects 283
5.4.7 Hybridization 283

EXERCISES 284
FURTHER READING 286
CONTENTS

7.4 Kinetic Experiments 382
7.4.1 How Kinetics Experiments are Performed 382
7.4.2 Kinetic Analyses for Simple Mechanisms 384
 First Order Kinetics 385
 Second Order Kinetics 386
 Pseudo-First Order Kinetics 387
 Equilibrium Kinetics 388
 Initial-Rate Kinetics 389
 Tabulating a Series of Common Kinetic Scenarios 389

7.5 Complex Reactions—Deciphering Mechanisms 390
7.5.1 Steady State Kinetics 390
7.5.2 Using the SSA to Predict Changes in Kinetic Order 395
7.5.3 Saturation Kinetics 396
7.5.4 Prior Rapid Equilibria 397

7.6 Methods for Following Kinetics 397
7.6.1 Reactions with Half-Lives Greater than a Few Seconds 398
7.6.2 Fast Kinetics Techniques 398
 Flow Techniques 399
 Flash Photolysis 399
 Pulse Radiolysis 401
7.6.3 Relaxation Methods 401
7.6.4 Summary of Kinetic Analyses 402

7.7 Calculating Rate Constants 403
7.7.1 Marcus Theory 403
7.7.2 Marcus Theory Applied to Electron Transfer 405

7.8 Considering Multiple Reaction Coordinates 407
7.8.1 Variation in Transition State Structures Across a Series of Related Reactions—An Example Using Substitution Reactions 407
7.8.2 More O’Ferrall–Jencks Plots 409
7.8.3 Changes in Vibrational State Along the Reaction Coordinate—Relating the Third Coordinate to Entropy 412

Summary and Outlook 413

EXERCISES 413
FURTHER READING 417

CHAPTER 8: Experiments Related to Thermodynamics and Kinetics 421

Intent and Purpose 421

8.1 Isotope Effects 421
8.1.1 The Experiment 422
8.1.2 The Origin of Primary Kinetic Isotope Effects 422
 Reaction Coordinate Diagrams and Isotope Effects 424
 Primary Kinetic Isotope Effects for Linear Transition States as a Function of Exothermicity and Endothermicity 425
 Isotope Effects for Linear vs. Non-Linear Transition States 428

8.1.3 The Origin of Secondary Kinetic Isotope Effects 428
 Hybridization Changes 429
 Steric Isotope Effects 430
8.1.4 Equilibrium Isotope Effects 432
 Isotopic Perturbation of Equilibrium—Applications to Carbocations 432
8.1.5 Tunneling 435
8.1.6 Solvent Isotope Effects 437
 Fractionation Factors 437
 Proton Inventories 438
8.1.7 Heavy Atom Isotope Effects 441
8.1.8 Summary 441

8.2 Substituent Effects 441
8.2.1 The Origin of Substituent Effects 443
 Field Effects 443
 Inductive Effects 443
 Resonance Effects 444
 Polarizability Effects 444
 Steric Effects 445
 Solvation Effects 445

8.3 Hammett Plots—The Most Common LFER. A General Method for Examining Changes in Charges During a Reaction 445
8.3.1 Sigma (σ) 445
8.3.2 Rho (ρ) 447
8.3.3 The Power of Hammett Plots for Deciphering Mechanisms 448
8.3.4 Deviations from Linearity 449
8.3.5 Separating Resonance from Induction 451
8.4 Other Linear Free Energy Relationships 454
8.4.1 Steric and Polar Effects—Taft Parameters 454
8.4.2 Solvent Effects—Grunwald–Winstein Plots 455
8.4.3 Schleyer Adaptation 457
8.4.4 Nucleophilicity and Nucleofugality 458
 Basicity/Acidity 459
 Solvation 460
 Polarizability, Basicity, and Solvation Interplay 460
 Shape 461
8.4.5 Swain–Scott Parameters—Nucleophilicity Parameters 461
8.4.6 Edwards and Ritchie Correlations 463
8.5 Acid–Base Related Effects—Brønsted Relationships 464
8.5.1 \(b_{\text{Nuc}} \) 464
8.5.2 \(b_{\text{LG}} \) 464
8.5.3 Acid–Base Catalysis 466

8.6 Why do Linear Free Energy Relationships Work? 466
8.6.1 General Mathematics of LFERs 467
8.6.2 Conditions to Create an LFER 468
8.6.3 The Isokinetic or Isoequilibrium Temperature 469
8.6.4 Why does Enthalpy–Entropy Compensation Occur? 469
 Steric Effects 470
 Solvation 470

8.7 Summary of Linear Free Energy Relationships 470
8.8 Miscellaneous Experiments for Studying Mechanisms 471
8.8.1 Product Identification 472
8.8.2 Changing the Reactant Structure to Divert or Trap a Proposed Intermediate 473
8.8.3 Trapping and Competition Experiments 474
8.8.4 Checking for a Common Intermediate 475
8.8.5 Cross-Over Experiments 476
8.8.6 Stereochemical Analysis 476
8.8.7 Isotope Scrambling 477
8.8.8 Techniques to Study Radicals: Clocks and Traps 478
8.8.9 Direct Isolation and Characterization of an Intermediate 480
8.8.10 Transient Spectroscopy 480
8.8.11 Stable Media 481

Summary and Outlook 482

EXERCISES 482
FURTHER READING 487

CHAPTER 9: Catalysis 489

Intent and Purpose 489

9.1 General Principles of Catalysis 490
9.1.1 Binding the Transition State Better than the Ground State 491
9.1.2 A Thermodynamic Cycle Analysis 493
9.1.3 A Spatial Temporal Approach 494

9.2 Forms of Catalysis 495
9.2.1 “Binding” is Akin to Solvation 495
9.2.2 Proximity as a Binding Phenomenon 495
9.2.3 Electrophilic Catalysis 499
 Electrostatic Interactions 499
 Metal Ion Catalysis 500
9.2.4 Acid–Base Catalysis 502
9.2.5 Nucleophilic Catalysis 502
9.2.6 Covalent Catalysis 504
9.2.7 Strain and Distortion 505
9.2.8 Phase Transfer Catalysis 507

9.3 Bronsted Acid–Base Catalysis 507
9.3.1 Specific Catalysis 507
 The Mathematics of Specific Catalysis 507
 Kinetic Plots 510
9.3.2 General Catalysis 510
 The Mathematics of General Catalysis 511
 Kinetic Plots 512
9.3.3 A Kinetic Equivalency 514
9.3.4 Concerted or Sequential General-Acid–General-Base Catalysis 515
9.3.5 The Brønsted Catalysis Law and Its Ramifications 516
 A Linear Free Energy Relationship 516
 The Meaning of α and β 517
 $\alpha + \beta = 1$ 518
 Deviations from Linearity 519

9.3.6 Predicting General-Acid or General-Base Catalysis 520
 The Libido Rule 520
 Potential Energy Surfaces Dictate General or Specific Catalysis 521
9.3.7 The Dynamics of Proton Transfers 522
 Marcus Analysis 522

9.4 Enzymatic Catalysis 523
9.4.1 Michaelis–Menten Kinetics 523
9.4.2 The Meaning of k_{cat}, k_{cat}/k_{M}, and K_M 524
9.4.3 Enzyme Active Sites 525
9.4.4 [S] vs. K_M—Reaction Coordinate Diagrams 527
9.4.5 Supramolecular Interactions 529

Summary and Outlook 530

EXERCISES 531
FURTHER READING 535

CHAPTER 10: Organic Reaction Mechanisms, Part 1: Reactions Involving Additions and/or Eliminations 537

Intent and Purpose 537

10.1 Predicting Organic Reactivity 538
10.1.1 A Useful Paradigm for Polar Reactions 539
 Nucleophiles and Electrophiles 539
 Lewis Acids and Lewis Bases 540
 Donor–Acceptor Orbital Interactions 540
10.1.2 Predicting Radical Reactivity 541
10.1.3 In Preparation for the Following Sections 541
 —ADDITION REACTIONS— 542
10.2 Hydration of Carbonyl Structures 542
10.2.1 Acid–Base Catalysis 543
10.2.2 The Thermodynamics of the Formation of Geminal Diols and Hemicetals 544

10.3 Electrophilic Addition of Water to Alkenes and Alkynes: Hydration 545
10.3.1 Electron Pushing 546
10.3.2 Acid-Catalyzed Aqueous Hydration 546
10.3.3 Regiochemistry 546
10.3.4 Alkyne Hydration 547

10.4 Electrophilic Addition of Hydrogen Halides to Alkenes and Alkynes 548
10.4.1 Electron Pushing 548
10.4.2 Experimental Observations Related to Regiochemistry and Stereochemistry 548
10.4.3 Addition to Alkenes 551

10.5 Electrophilic Addition of Halogens to Alkenes 551
10.5.1 Electron Pushing 548
10.5.2 Stereochemistry 552
10.5.3 Other Evidence Supporting a σ Complex 552
10.5.4 Mechanistic Variants 553
10.5.5 Addition to Alkynes 554

10.6 Hydroboration 554
10.6.1 Electron Pushing 555
10.6.2 Experimental Observations 555

10.7 Epoxidation 555
10.7.1 Electron Pushing 556
10.7.2 Experimental Observations 556

10.8 Nucleophilic Additions to Carbonyl Compounds 556
10.8.1 Electron Pushing for a Few Nucleophilic Additions 557
10.8.2 Experimental Observations for Cyanohydrin Formation 559
10.8.3 Experimental Observations for Grignard Reactions 560
10.8.4 Experimental Observations in LAH Reductions 561
10.8.5 Orbital Considerations 561
 The Bürgi–Dunitz Angle 561
 Orbital Mixing 562
10.8.6 Conformational Effects in Additions to Carbonyl Compounds 562
10.8.7 Stereochemistry of Nucleophilic Additions 563

10.9 Nucleophilic Additions to Olefins 567
10.9.1 Electron Pushing 567
10.9.2 Experimental Observations 567
10.9.3 Regiochemistry of Addition 567
10.9.4 Baldwin’s Rules 568

10.10 Radical Additions to Unsaturated Systems 569
10.10.1 Electron Pushing for Radical Additions 569
10.10.2 Radical Initiators 570
10.10.3 Chain Transfer vs. Polymerization 571
10.10.4 Termination 571
10.10.5 Regiochemistry of Radical Additions 572

10.11 Carbene Additions and Insertions 572
10.11.1 Electron Pushing for Carbene Reactions 574
10.11.2 Carbene Generation 574
10.11.3 Experimental Observations for Carbene Reactions 575
—ELIMINATIONS— 576

10.12 Eliminations to Form Carbonyls or “Carbonyl-Like” Intermediates 577
10.12.1 Electron Pushing 577
10.12.2 Stereoelectronic and Isotope Labeling Evidence 577
10.12.3 Catalysis of the Hydrolysis of Acetals 578
10.12.4 Stereoelectronic Effects 579
10.12.5 CrO3 Oxidation—The Jones Reagent 580
 Electron Pushing 580
 A Few Experimental Observations 581

10.13 Elimination Reactions for Aliphatic Systems—Forming Alkenes 581
10.13.1 Electron Pushing and Definitions 581
10.13.2 Some Experimental Observations for E2 and E1 Reactions 582
10.13.3 Contrasting Elimination and Substitution 538
10.13.4 Another Possibility—E1cB 584
10.13.5 Kinetics and Experimental Observations for E1cB 584
10.13.6 Contrasting E2, E1, and E1cB 586
10.13.7 Regiochemistry of Eliminations 588
10.13.8 Stereochemistry of Eliminations—Orbital Considerations 590
10.13.9 Dehydration 592
 Electron Pushing 592
 Other Mechanistic Possibilities 594
10.13.10 Thermal Eliminations 594

10.14 Eliminations from Radical Intermediates 596
—COMBINING ADDITION AND ELIMINATION REACTIONS (SUBSTITUTIONS AT sp2 CENTERS)— 596

10.15 The Addition of Nitrogen Nucleophiles to Carbonyl Structures, Followed by Elimination 597
10.15.1 Electron Pushing 598
10.15.2 Acid–Base Catalysis 598

10.16 The Addition of Carbon Nucleophiles, Followed by Elimination—The Wittig Reaction 599
10.16.1 Electron Pushing 600

10.17 Acyl Transfers 600
10.17.1 General Electron-Pushing Schemes 600
10.17.2 Isotope Scrambling 601
10.17.3 Predicting the Site of Cleavage for Acyl Transfers from Esters 602
10.17.4 Catalysis 602

10.18 Electrophilic Aromatic Substitution 607
10.18.1 Electron Pushing for Electrophilic Aromatic Substitutions 607
10.18.2 Kinetics and Isotope Effects 608
10.18.3 Intermediate Complexes 608
10.18.4 Regiochemistry and Relative Rates of Aromatic Substitution 609

10.19 Nucleophilic Aromatic Substitution 611
10.19.1 Electron Pushing for Nucleophilic Aromatic Substitution 611
10.19.2 Experimental Observations 611

10.20 Reactions Involving Benzyne 612
10.20.1 Electron Pushing for Benzyne Reactions 612
10.20.2 Experimental Observations 613
10.20.3 Substituent Effects 613

10.21 The S_{RN1} Reaction on Aromatic Rings 615
10.21.1 Electron Pushing 615
10.21.2 A Few Experimental Observations 615
11.11 Rearrangements Involving Radicals 683
11.11.1 Hydrogen Shifts 683
11.11.2 Aryl and Vinyl Shifts 684
11.11.3 Ring-Opening Reactions 685

11.12 Rearrangements and Isomerizations Involving Biradicals 685
11.12.1 Electron Pushing Involving Biradicals 685
11.12.2 Tetramethylene 687
11.12.3 Trimethylene 689
11.12.4 Trimethylenemethane 693

Summary and Outlook 695

EXERCISES 695
FURTHER READING 703

CHAPTER 12: Organotransition Metal Reaction Mechanisms and Catalysis 705

Intent and Purpose 705

12.1 The Basics of Organometallic Complexes 705
12.1.1 Electron Counting and Oxidation State 706
 Electron Counting 706
 Oxidation State 708
 d Electron Count 708
 Ambiguities 708
12.1.2 The 18-Electron Rule 710
12.1.3 Standard Geometries 710
12.1.4 Terminology 711
12.1.5 Electron Pushing with Organometallic Structures 711
12.1.6 d Orbital Splitting Patterns 712
12.1.7 Stabilizing Reactive Ligands 713

12.2 Common Organometallic Reactions 714
12.2.1 Ligand Exchange Reactions 714
 Reaction Types 714
 Kinetics 716
 Structure–Function Relationships with the Metal 716
 Structure–Function Relationships with the Ligand 716
 Substitutions of Other Ligands 717
12.2.2 Oxidative Addition 717
 Stereochemistry of the Metal Complex 718
 Kinetics 718
 Stereochemistry of the R Group 719
 Structure–Function Relationship for the R Group 720
 Structure–Function Relationships for the Ligands 720
 Oxidative Addition at sp² Centers 721
 Summary of the Mechanisms for Oxidative Addition 721
12.2.3 Reductive Elimination 724
 Structure–Function Relationship for the R Group and the Ligands 724
 Stereochemistry at the Metal Center 725
 Other Mechanisms 725
 Summary of the Mechanisms for Reductive Elimination 726

12.2.4 α- and β-Eliminations 727
 General Trends for α- and β-Eliminations 727
 Kinetics 728
 Stereochemistry of β-Hydride Elimination 729
12.2.5 Migratory Insertions 729
 Kinetics 730
 Studies to Decipher the Mechanism of Migratory Insertion Involving CO 730
 Other Stereochemical Considerations 732
12.2.6 Electrophilic Addition to Ligands 733
 Reaction Types 733
 Common Mechanisms Deduced From Stereochemical Analyses 734
12.2.7 Nucleophilic Addition to Ligands 734
 Reaction Types 735
 Stereochemical and Regiochemical Analyses 735

12.3 Combining the Individual Reactions into Overall Transformations and Cycles 737
12.3.1 The Nature of Organometallic Catalysis—Change in Mechanism 738
12.3.2 The Monsanto Acetic Acid Synthesis 738
12.3.3 Hydroformylation 739
12.3.4 The Water-Gas Shift Reaction 740
12.3.5 Olefin Oxidation—The Wacker Process 741
12.3.6 Palladium Coupling Reactions 742
12.3.7 Allylic Alkylation 743
12.3.8 Olefin Metathesis 744

Summary and Outlook 747

EXERCISES 748
FURTHER READING 750

CHAPTER 13: Organic Polymer and Materials Chemistry 753

Intent and Purpose 753

13.1 Structural Issues in Materials Chemistry 754
13.1.1 Molecular Weight Analysis of Polymers 754
 Number Average and Weight Average Molecular Weights—Mn and Mw 754
13.1.2 Thermal Transitions—Thermoplastics and Elastomers 757
13.1.3 Basic Polymer Topologies 759
13.1.4 Polymer—Polymer Phase Behavior 760
13.1.5 Polymer Processing 762
13.1.6 Novel Topologies—Dendrimers and Hyperbranched Polymers 763
 Dendrimers 763
 Hyperbranched Polymers 768
13.1.7 Liquid Crystals 769
13.1.8 Fullerenes and Carbon Nanotubes 775

13.2 Common Polymerization Mechanisms 779
13.2.1 General Issues 779
13.2.2 Polymerization Kinetics 782
 Step-Growth Kinetics 782
PART III
ELECTRONIC STRUCTURE:
THEORY AND APPLICATIONS

CHAPTER 14: Advanced Concepts in Electronic Structure Theory 807

Intent and Purpose 807

14.1 Introductory Quantum Mechanics 808
14.1.1 The Nature of Wavefunctions 808
14.1.2 The Schrödinger Equation 809
14.1.3 The Hamiltonian 810
14.1.4 The Nature of the \(V^2 \) Operator 811
14.1.5 Why Do Bonds Form? 812

14.2 Calculational Methods—Solving the Schrödinger Equation for Complex Systems 815
14.2.1 \textit{Ab Initio} Molecular Orbital Theory 815
\textit{Born–Oppenheimer Approximation} 815
The Orbital Approximation 815
Spin 816
The Pauli Principle and Determinantal Wave Functions 816
The Hartree–Fock Equation and the Variational Theorem 818
SCF Theory 821
Linear Combination of Atomic Orbitals—Molecular Orbitals (LCAO–MO) 821
Common Basis Sets—Modeling Atomic Orbitals 822
Extension Beyond HF—Correlation Energy 824
Solvation 825
General Considerations 825
Summary 826
14.2.2 Secular Determinants—A Bridge Between \textit{Ab Initio}, Semi-Empirical / Approximate, and Perturbational Molecular Orbital Theory Methods 828
\textit{The “Two-Orbital Mixing Problem”} 829

14.2.3 Semi-Empirical and Approximate Methods 833
\textit{Neglect of Differential Overlap (NDO) Methods} 833
\textit{i. CNDO, INDO, PNDO (C = Complete, I = Intermediate, P = Partial)} 834
\textit{ii. The Semi-Empirical Methods: MNDO, AM1, and PM3} 834
\textit{Extended Hückel Theory (EHT)} 834
\textit{Hückel Molecular Orbital Theory (HMOT)} 835

14.2.4 Some General Comments on Computational Quantum Mechanics 835
14.2.5 An Alternative: Density Functional Theory (DFT) 836

14.3 A Brief Overview of the Implementation and Results of HMOT 837
14.3.1 Implementing Hückel Theory 838
14.3.2 HMOT of Cyclic \(\pi \) Systems 840
14.3.3 HMOT of Linear \(\pi \) Systems 841
14.3.4 Alternate Hydrocarbons 842

14.4 Perturbation Theory—Orbital Mixing Rules 844
14.4.1 Mixing of Degenerate Orbitals—First-Order Perturbations 845
14.4.2 Mixing of Non-Degenerate Orbitals—Second-Order Perturbations 845

14.5 Some Topics in Organic Chemistry for Which Molecular Orbital Theory Lends Important Insights 846
14.5.1 Arenes: Aromaticity and Antiaromaticity 846
14.5.2 Cyclopropane and Cyclopropylcarbinyl—Walsh Orbitals 848
\textit{The Cyclic Three-Orbital Mixing Problem} 849
\textit{The MOs of Cyclopropane} 850
14.5.3 Planar Methane 853
14.5.4 Through-Bond Coupling 854
14.5.5 Unique Bonding Capabilities of Carbocations—Non-Classical Ions and Hypervalent Carbon 855
\textit{Transition State Structure Calculations} 856
\textit{Application of These Methods to Carbocations} 857
\textit{NMR Effects in Carbocations} 857
\textit{The Norbornyl Cation} 858
14.5.6 Spin Preferences 859
Two Weakly Interacting Electrons: \(H_2 \) vs. Atomic C 859

14.6 Organometallic Complexes 862
14.6.1 Group Orbitals for Metals 863
14.6.2 The Isolobal Analogy 866
14.6.3 Using the Group Orbitals to Construct Organometallic Complexes 867

Summary and Outlook 868

EXERCISES 868
FURTHER READING 875
CHAPTER 15: Thermal Pericyclic Reactions

INTENT AND PURPOSE

15.1 Background

15.2 A Detailed Analysis of Two Simple Cycloadditions

15.2.1 Orbital Symmetry Diagrams

15.2.2 State Correlation Diagrams

15.2.3 Frontier Molecular Orbital (FMO) Theory

15.2.4 Aromatic Transition State Theory/Topology

15.2.5 The Generalized Orbital Symmetry Rule

15.2.6 Some Comments on 'Forbidden' and 'Allowed' Reactions

15.2.7 Photochemical Pericyclic Reactions

15.2.8 Summary of the Various Methods

15.3 Cycloadditions

15.3.1 An Allowed Geometry for [2+2] Cycloadditions

15.3.2 Summarizing Cycloadditions

15.3.3 General Experimental Observations

15.3.4 Stereochemistry and Regiochemistry of the Diels–Alder Reaction

15.3.5 Experimental Observations for [2+2] Cycloadditions

15.3.6 Experimental Observations for 1,3-Dipolar Cycloadditions

15.3.7 Retrocycloadditions

15.4 Electrocyclic Reactions

15.4.1 Terminology

15.4.2 Theoretical Analyses

15.4.3 Experimental Observations: Stereochemistry

15.4.4 Torquoselectivity

15.5 Sigmatropic Rearrangements

15.5.1 Theory

15.5.2 Experimental Observations: A Focus on Stereochemistry

15.5.3 The Mechanism of the Cope Rearrangement

15.5.4 The Claisen Rearrangement

15.5.5 The Ene Reaction

15.5.6 The Pericyclic Reaction

15.5.7 The Enoic Acid Rearrangement

15.5.8 The Claisen Rearrangement

15.5.9 The Cope Rearrangement

15.5.10 The Ene Reaction

15.5.11 The Pericyclic Reaction

15.5.12 The Enoic Acid Rearrangement

15.5.13 The Claisen Rearrangement

15.5.14 The Cope Rearrangement

15.5.15 The Ene Reaction

15.5.16 The Pericyclic Reaction

15.5.17 The Enoic Acid Rearrangement

15.5.18 The Claisen Rearrangement

15.5.19 The Cope Rearrangement

15.5.20 The Ene Reaction

15.5.21 The Pericyclic Reaction

15.5.22 The Enoic Acid Rearrangement

15.5.23 The Claisen Rearrangement

15.5.24 The Cope Rearrangement

15.5.25 The Ene Reaction

15.5.26 The Pericyclic Reaction

15.5.27 The Enoic Acid Rearrangement

15.6 Cheletropic Reactions

15.6.1 Theoretical Analyses

15.6.2 Carbene Additions

15.7 In Summary—Applying the Rules

SUMMARY AND OUTLOOK

EXERCISES

FURTHER READING
CHAPTER 1
How Realistic are Formal Charges? 7
NMR Coupling Constants 10
Scaling Electrostatic Surface Potentials 15
1-Fluorobutane 16
Particle in a Box 21
Resonance in the Peptide Amide Bond? 23
A Brief Look at Symmetry and Symmetry Operations 29
CH₅⁺—Not Really a Well-Defined Structure 55
Pyramidal Inversion: NH₃ vs. PH₃ 57
Stable Carbenes 59

CHAPTER 2
Entropy Changes During Cyclization Reactions 71
A Consequence of High Bond Strength: The Hydroxyl Radical in Biology 73
The Half-Life for Homolysis of Ethane at Room Temperature 73
The Probability of Finding Atoms at Particular Separations 75
How Do We Know That n = 0 is Most Relevant for Bond Stretches at T = 298 K? 76
Potential Surfaces for Bond Bending Motions 78
How Big is 3 kcal / mol? 93
Shouldn’t Torsional Motions be Quantized? 94
The Geometry of Radicals 96
Differing Magnitudes of Energy Values in Thermodynamics and Kinetics 100
“Sugar Pucker” in Nucleic Acids 102
Alternative Measurements of Steric Size 104
The Use of A Values in a Conformational Analysis Study for the Determination of Intramolecular Hydrogen Bond Strength 105
The NMR Time Scale 106
Ring Fusion—Steroids 108
A Conformational Effect on the Material Properties of Poly(3-Alkylthiophenes) 116
Cyclopropenyl Cation 117
Cyclopropenyl Anion 118
Porphyrins 119
Protein Disulfide Linkages 123
From Strained Molecules to Molecular Rods 126
Cubane Explosives? 126
Molecular Gears 128

CHAPTER 3
The Use of Solvent Scales to Direct Diels–Alder Reactions 149
The Use of Wetting and the Capillary Action Force to Drive the Self-Assembly of Macroscopic Objects 151
The Solvent Packing Coefficient and the 55% Solution 152
Solvation Can Affect Equilibria 155
A van’t Hoff Analysis of the Formation of a Stable Carbene 163
The Strength of a Buried Salt Bridge 165
The Angular Dependence of Dipole–Dipole Interactions—The “Magic Angle” 168
An Unusual Hydrogen Bond Acceptor 169
Evidence for Weak Directionality Considerations 170
Intramolecular Hydrogen Bonds are Best for Nine-Membered Rings 170
Solvant Scales and Hydrogen Bonds 172
The Extent of Resonance can be Correlated with Hydrogen Bond Length 174
Cooperative Hydrogen Bonding in Saccharides 175
How Much is a Hydrogen Bond in an α-Helix Worth? 176
Proton Sponges 179
The Relevance of Low-Barrier Hydrogen Bonds to Enzymatic Catalysis 179
β-Peptide Foldamers 180
A Cation–π Interaction at the Nicotine Receptor 183
The Polar Nature of Benzene Affects Acidities in a Predictable Manner 184
Use of the Arene–Perfluorarene Interaction in the Design of Solid State Structures 185
Donor–Acceptor Driven Folding 187
The Hydrophobic Effect and Protein Folding 194
More Foldamers: Folding Driven by Solvophobic Effects 195
Calculating Drug Binding Energies by SPT 201

CHAPTER 4
The Units of Binding Constants 209
Cooperativity in Drug Receptor Interactions 215
The Hill Equation and Cooperativity in Protein–Ligand Interactions 219
The Benisi–Hildebrand Plot 221
How are Heat Changes Related to Enthalpy? 223
Using the Helical Structure of Peptides and the Complexation Power of Crowns to Create an Artificial Transmembrane Channel 226
Preorganization and the Salt Bridge 229
A Clear Case of Entropy Driven Electrostatic Complexation 229
Salt Bridges Evaluated by Non-Biological Systems 230
Does Hydrogen Bonding Really Play a Role in DNA Strand Recognition? 233
Calixarenes—Important Building Blocks for Molecular Recognition and Supramolecular Chemistry 238
Aromatics at Biological Binding Sites 239
Combining the Cation–π Effect and Crown Ethers 240
A Thermodynamic Cycle to Determine the Strength of a Polar–π Interaction 242
Molecular Mechanics/Modeling and Molecular Recognition 243
Biotin/Avidin: A Molecular Recognition/Self-Assembly Tool from Nature 249
Taming Cyclobutadiene—A Remarkable Use of Supramolecular Chemistry 251
Determination of 1,4-Biradical Lifetimes Using a Radical Clock 480
The Identification of Intermediates from a Catalytic Cycle Needs to be Interpreted with Care 481

CHAPTER 9
The Application of Figure 9.4 to Enzymes 494
High Proximity Leads to the Isolation of a Tetrahedral Intermediate 498
The Notion of “Near Attack Conformations” 499
Toward an Artificial Acetylcholinesterase 501
Metal and Hydrogen Bonding Promoted Hydrolysis of 2',3'-cAMP 502
Nucleophilic Catalysis of Electrophilic Reactions 503
Organocatalysis 505
Lysozyme 506
A Model for General-Acid–General-Base Catalysis 514
Anomalous Brønsted Values 519
Artificial Enzymes: Cycloextrinsics Lead the Way 530

CHAPTER 10
Cyclic Forms of Saccharides and Concerted Proton Transfers 545
Squalene to Lanosterol 550
Mechanisms of Asymmetric Epoxidation Reactions 558
Nature’s Hydride Reducing Agent 566
The Captodative Effect 573
Stereoelectronics in an Acyl Transfer Model 579
The Swern Oxidation 580
Gas Phase Eliminations 588
Using the Curtin–Hammett Principle 593
Aconitase—An Enzyme that Catalyzes Dehydration and Rehydration 595
Enzymatic Acyl Transfers I: The Catalytic Triad 604
Enzymatic Acyl Transfers II: Zn(II) Catalysis 605
Enzyme Mimics for Acyl Transfers 606
Peptide Synthesis—Optimizing Acyl Transfer 606

CHAPTER 11
Enolate Aggregation 631
Control of Stereocchemistry in Enolate Reactions 636
Gas Phase S$_2$2 Reactions—A Stark Difference in Mechanism from Solution 641
A Potential Kinetic Quandary 642
Contact Ion Pairs vs. Solvent-Separated Ion Pairs 647
An Enzymatic S$_n$2 Reaction: Haloalkane Dehydrogenase 649
The Meaning of β_{HC} Values 651
Carbocation Rearrangements in Rings 658
Anchimeric Assistance in War 660
Further Examples of Hypervalent Carbon 666
Brominations Using N-Bromosuccinimide 673
An Enzymatic Analog to the Benzilic Acid Rearrangement: Acetohydroxy-Acid Isomeroreductase 677

CHAPTER 12
Bonding Models 709
Electrophilic Aliphatic Substitutions (S$_2$2 and S$_n$1) 715
C–H Activation, Part 1 722
C–H Activation, Part 2 723
The Sandmeyer Reaction 726
Olefin Slippage During Nucleophilic Addition to Alkenes 737
Pd(0) Coupling Reactions in Organic Synthesis 742
Stereocatalust at Every Step in Asymmetric Allylic Alkylations 745
Cyclic Rings Possessing Over 100,000 Carbons! 747

CHAPTER 13
Monodisperse Materials Prepared Biosynthetically 756
An Analysis of Dispersity and Molecular Weight 757
A Melting Analysis 759
PMMA—One Polymer with a Remarkable Range of Uses 793
Living Polymers for Better Running Shoes 795
Using 13C NMR Spectroscopy to Evaluate Polymer Stereochemistry 797

CHAPTER 14
The Hydrogen Atom 811
Methane—Molecular Orbitals or Discrete Single Bonds with sp^3 Hybrids? 827
Koopmans’ Theorem—A Connection Between Ab Initio Calculations and Experiment 828
A Matrix Approach to Setting Up the LCAO Method Through-Bond Coupling and Spin Preferences 861
Cyclobutadiene at the Two-Electron Level of Theory 862

CHAPTER 15
Symmetry Does Matter 887
Allowed Organometallic [2+2] Cycloadditions 895
Semi-Empirical vs. Ab Initio Treatments of Pericyclic Transition States 900
Electrocyclization in Cancer Therapeutics 910
Fluxional Molecules 913
A Remarkable Substituent Effect: The Oxy-Cope Rearrangement 921
A Biological Claisen Rearrangement—The Chorismate Mutase Reaction 922
Hydrophobic Effects in Pericyclic Reactions 923
Pericyclic Reactions of Radical Cations 925

CHAPTER 16
Excited State Wavefunctions 937
Physical Properties of Excited States 944
The Sensitivity of Fluorescence—Good News and Bad News 946
GFP Part I: Nature’s Fluorophore 947
Isosbestic Points—Hallmarks of One-to-One Stoichiometric Conversions 949
LIST OF HIGHLIGHTS

The “Free Rotor” or “Loose Bolt” Effect on Quantum Yields 953
Single-Molecule FRET 961
Trans-Cyclohexene? 967
Retinal and Rhodopsin—The Photochemistry of Vision 968
Photochromism 969
UV Damage of DNA—A [2+2] Photoreaction 971
Using Photochemistry to Generate Reactive Intermediates:
 Strategies Fast and Slow 983
Photoaffinity Labeling—A Powerful Tool for Chemical Biology 984
Light Sticks 987
GFP Part II: Aequorin 989
Photodynamic Therapy 991

CHAPTER 17
Solitons in Polyacetylene 1015
Scanning Probe Microscopy 1040
Soft Lithography 1041
The twentieth century saw the birth of physical organic chemistry—the study of the inter-
relationships between structure and reactivity in organic molecules—and the discipline ma-
tured to a brilliant and vibrant field. Some would argue that the last century also saw the
near death of the field. Undeniably, physical organic chemistry has had some difficult times.
There is a perception by some that chemists thoroughly understand organic reactivity and
that there are no important problems left. This view ignores the fact that while the rigorous
treatment of structure and reactivity in organic structures that is the field’s hallmark con-
tinues, physical organic chemistry has expanded to encompass other disciplines.

In our opinion, physical organic chemistry is alive and well in the early twenty-first
century. New life has been breathed into the field because it has embraced newer chemical
disciplines, such as bioorganic, organometallic, materials, and supramolecular chemistries.
Bioorganic chemistry is, to a considerable extent, physical organic chemistry on proteins,
nucleic acids, oligosaccharides, and other biomolecules. Organometallic chemistry traces its
intellectual roots directly to physical organic chemistry, and the tools and conceptual frame-
work of physical organic chemistry continue to permeate the field. Similarly, studies of poly-
mers and other materials challenge chemists with problems that benefit directly from the
techniques of physical organic chemistry. Finally, advances in supramolecular chemistry re-
sult from a deeper understanding of the physical organic chemistry of intermolecular inter-
actions. These newer disciplines have given physical organic chemists fertile ground in
which to study the interrelationships of structure and reactivity. Yet, even while these new
fields have been developing, remarkable advances in our understanding of basic organic
chemical reactivity have continued to appear, exploiting classical physical organic tools and
developing newer experimental and computational techniques. These new techniques have
allowed the investigation of reaction mechanisms with amazing time resolution, the direct
characterization of classically elusive molecules such as cyclobutadiene, and highly detailed
and accurate computational evaluation of problems in reactivity. Importantly, the tech-
niques of physical organic chemistry and the intellectual approach to problems embodied
by the discipline remain as relevant as ever to organic chemistry. Therefore, a course in phys-
ical organic chemistry will be essential for students for the foreseeable future.

This book is meant to capture the state of the art of physical organic chemistry in the
early twenty-first century, and, within the best of our ability, to present material that will re-
main relevant as the field evolves in the future. For some time it has been true that if a student
opens a physical organic chemistry textbook to a random page, the odds are good that he or
she will see very interesting chemistry, but chemistry that does not represent an area of sig-
nificant current research activity. We seek to rectify that situation with this text. A student
must know the fundamentals, such as the essence of structure and bonding in organic mol-
ecules, the nature of the basic reactive intermediates, and organic reaction mechanisms.
However, students should also have an appreciation of the current issues and challenges in
the field, so that when they inspect the modern literature they will have the necessary back-
ground to read and understand current research efforts. Therefore, while treating the funda-
mentals, we have wherever possible chosen examples and highlights from modern research
areas. Further, we have incorporated chapters focused upon several of the modern disci-
plines that benefit from a physical organic approach. From our perspective, a protein, elec-
trically conductive polymer, or organometallic complex should be as relevant to a course in
physical organic chemistry as are small rings, annulenes, or nonclassical ions.

We recognize that this is a delicate balancing act. A course in physical organic chemistry
cannot also be a course in bioorganic or materials chemistry. However, a physical organic chemistry class should not be a history course, either. We envision this text as appropriate for many different kinds of courses, depending on which topics the instructor chooses to emphasize. In addition, we hope the book will be the first source a researcher approaches when confronted with a new term or concept in the primary literature, and that the text will provide a valuable introduction to the topic. Ultimately, we hope to have produced a text that will provide the fundamental principles and techniques of physical organic chemistry, while also instilling a sense of excitement about the varied research areas impacted by this brilliant and vibrant field.

Eric V. Anslyn
Norman Hackerman Professor
University Distinguished Teaching Professor
University of Texas, Austin

Dennis A. Dougherty
George Grant Hoag Professor of Chemistry
California Institute of Technology
Many individuals have contributed to the creation of this textbook in various ways, including offering moral support, contributing artwork, and providing extensive feedback on some or all of the text. We especially thank the following for numerous and varied contributions: Bob Bergman, Wes Borden, Akin Davulcu, Francois Diederich, Samuel Gellman, Robert Hanes, Ken Houk, Anthony Kirby, John Lavigne, Charles Lieber, Shawn McCleskey, Kurt Mislow, Jeffrey Moore, Charles Perrin, Larry Scott, John Sherman, Timothy Snowden, Suzanne Tobey, Nick Turro, Grant Willson, and Sheryl Wiskur.

A very special thanks goes to Michael Sponsler, who wrote the accompanying Solutions Manual for the exercises given in each chapter. He read each chapter in detail, and made numerous valuable suggestions and contributions.

Producing this text has been extraordinarily complicated, and we thank: Bob Ishi for an inspired design; Tom Webster for dedicated efforts on the artwork; Christine Taylor for orchestrating the entire process and prodding when appropriate; John Murdzek for insightful editing; Jane Ellis for stepping up at the right times; and Bruce Armbruster for enthusiastic support throughout the project.

Finally, it takes a pair of very understanding wives to put up with a six-year writing process. We thank Roxanna Anslyn and Ellen Dougherty for their remarkable patience and endless support.
Our intent has been to produce a textbook that could be covered in a one-year course in physical organic chemistry. The order of chapters reflects what we feel is a sensible order of material for a one-year course, although other sequences would also be quite viable. In addition, we recognize that at many institutions only one semester, or one to two quarters, is devoted to this topic. In these cases, the instructor will need to pick and choose among the chapters and even sections within chapters. There are many possible variations, and each instructor will likely have a different preferred sequence, but we make a few suggestions here.

In our experience, covering Chapters 1–2, 5–8, selected portions of 9–11, and then 14–16, creates a course that is doable in one extremely fast-moving semester. Alternatively, if organic reaction mechanisms are covered in another class, dropping Chapters 10 and 11 from this order makes a very manageable one-semester course. Either alternative gives a fairly classical approach to the field, but instills the excitement of modern research areas through our use of “highlights” (see below). We have designed Chapters 9, 10, 11, 12, and 15 for an exhaustive, one-semester course on thermal chemical reaction mechanisms. In any sequence, mixing in Chapters 3, 4, 12, 13, and 17 whenever possible, based upon the interest and expertise of the instructor, should enhance the course considerably. A course that emphasizes structure and theory more than reactivity could involve Chapters 1–6, 13, 14, and 17 (presumably not in that order). Finally, several opportunities for special topics courses or parts of courses are available: computational chemistry, Chapters 2 and 14; supramolecular chemistry, Chapters 3, 4, and parts of 6; materials chemistry, Chapters 13, 17, and perhaps parts of 4; theoretical organic chemistry, Chapters 1, 14–17; and so on.

One of the ways we bring modern topics to the forefront in this book is through providing two kinds of highlights: “Going Deeper” and “Connections.” These are integral parts of the textbook that the students should not skip when reading the chapters (it is probably important to tell the students this). The Going Deeper highlights often expand upon an area, or point out what we feel is a particularly interesting sidelight on the topic at hand. The Connections highlights are used to tie the topic at hand to a modern discipline, or to show how the topic being discussed can be put into practice. We also note that many of the highlights make excellent starting points for a five- to ten-page paper for the student to write.

As noted in the Preface, one goal of this text is to serve as a reference when a student or professor is reading the primary literature and comes across unfamiliar terms, such as “dendrimer” or “photoresist.” However, given the breadth of topics addressed, we fully recognize that at some points the book reads like a “topics” book, without a truly in-depth analysis of a given subject. Further, many topics in a more classical physical organic text have been given less coverage herein. Therefore, many instructors may want to consult the primary literature and go into more detail on selected topics of special interest to them. We believe we have given enough references at the end of each chapter to enable the instructor to expand any topic. Given the remarkable literature-searching capabilities now available to most students, we have chosen to emphasize review articles in the references, rather than exhaustively citing the primary literature.

We view this book as a “living” text, since we know that physical organic chemistry will continue to evolve and extend into new disciplines as chemistry tackles new and varied problems. We intend to keep the text current by adding new highlights as appropriate, and perhaps additional chapters as new fields come to benefit from physical organic chemistry. We would appreciate instructors sending us suggestions for future topics to cover, along with particularly informative examples we can use as highlights. We cannot promise that
they will all be incorporated, but this literature will help us to keep a broad perspective on where the field is moving.

Given the magnitude and scope of this project, we are sure that some unclear presentations, misrepresentations, and even outright errors have crept in. We welcome corrections and comments on these issues from our colleagues around the world. Many difficult choices had to be made over the six years it took to create this text, and no doubt the selection of topics is biased by our own perceptions and interests. We apologize in advance to any of our colleagues who feel their work is not properly represented, and again welcome suggestions.

We wish you the best of luck in using this textbook.
Modern Physical Organic Chemistry