Biological Inorganic Chemistry

Structure and Reactivity
Contents of Brief

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix I</td>
<td>Abbreviations</td>
<td>713</td>
</tr>
<tr>
<td>Appendix II</td>
<td>Glossary</td>
<td>717</td>
</tr>
<tr>
<td>Appendix III</td>
<td>The Literature of Biological Inorganic Chemistry</td>
<td>727</td>
</tr>
<tr>
<td>Appendix IV</td>
<td>Introduction to the Protein Data Bank (PDB)</td>
<td>729</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>731</td>
</tr>
</tbody>
</table>
Contents

List of Contributors xvii
Preface xxi
Acknowledgements xxiii

Chapter I Introduction and Text Overview 1
Ivano Bertini, Harry B. Gray, Edward I. Stiefel, and Joan Selverstone Valentine
I.1. The Elements of Life 1
I.2. Functional Roles of Biological Inorganic Elements 1
I.3. A Guide to This Text 3

PART A Overviews of Biological Inorganic Chemistry 5

Chapter II Bioinorganic Chemistry and the Biogeochemical Cycles 7
Edward I. Stiefel
II.1. Introduction 7
II.2. The Origin and Abundance of the Chemical Elements 8
II.3. The Carbon/Oxygen/Hydrogen Cycles 12
II.4. The Nitrogen Cycle 16
II.5. The Sulfur Cycle 20
II.6. The Interaction and Integration of the Cycles 24
II.7. Conclusions 29

Chapter III Metal Ions and Proteins: Binding, Stability, and Folding 31
Ivano Bertini and Paola Turano
III.1. Introduction 31
III.2. The Metal Cofactor 31
III.3. Protein Residues as Ligands for Metal Ions 33
III.4. Genome Browsing 37
III.5. Folding and Stability of Metalloproteins 37
III.6. Kinetic Control of Metal Ion Delivery 40
Chapter IV Special Cofactors and Metal Clusters 43
Lucia Banci, Ivano Bertini, Claudio Luchinat, and Paola Turano

IV.1. Why Special Metal Cofactors? 43
IV.2. Types of Cofactors, Structural Features, and Occurrence 46
IV.3. Cofactor Biosynthesis 54

Chapter V Transport and Storage of Metal Ions in Biology 57
Thomas J. Lyons and David J. Eide

V.1. Introduction 57
V.2. Metal Ion Bioavailability 59
V.3. General Properties of Transport Systems 61
V.4. Iron Illustrates the Problems of Metal Ion Transport 66
V.5. Transport of Metal Ions Other Than Iron 70
V.6. Mechanisms of Metal Ion Storage and Resistance 71
V.7. Intracellular Metal Ion Transport and Trafficking 74
V.8. Summary 76

Chapter VI Biominerals and Biomineralization 79
Stephen Mann

VI.1. Introduction 79
VI.2. Biominerals: Types and Functions 79
VI.3. General Principles of Biomineralization 83
VI.4. Conclusions 93

Chapter VII Metals in Medicine 95
Peter J. Sadler, Christopher Muncie, and Michelle A. Shipman

VII.1. Introduction 95
VII.2. Metallotherapeutics 96
VII.3. Imaging and Diagnosis 114
VII.4. Molecular Targets 122
VII.5. Metal Metabolism as a Therapeutic Target 129
VII.6. Conclusions 132

Part B Metal Ion Containing Biological Systems 137

Chapter VIII Metal Ion Transport and Storage 139
Philip Aisen

VIII.1. Transferrin 139
VIII.1.1. Introduction: Iron Metabolism and the Aqueous Chemistry of Iron 139
VIII.1.2. Transferrin: The Iron Transporting Protein of Complex Organisms 140
VIII.1.3. Iron-Donating Function of Transferrin 141
VIII.1.4. Interaction of Transferrin with HFE 143
VIII.2. Ferritin 144
VIII.2.1. Introduction: The Need for Ferritins 144
VIII.2.2. Ferritin: Nature's Nanoreactor for Iron and Oxygen 145
VIII.3. Siderophores 151

Alison Butler

- VIII.3.1. Introduction: The Need for Siderophores 151
- VIII.3.2. Siderophore Structures 151
- VIII.3.3. Thermodynamics of Ferric Ion Coordination by Siderophores 152
- VIII.3.4. Outer-Membrane Receptor Proteins for Ferric Siderophores 153
- VIII.3.5. Marine Siderophores 154

VIII.4. Metallothioneins 156

Hans-Juergen Hartmann and Ulrich Weser

- VIII.4.1. Introduction 157
- VIII.4.2. Classes of Metallothioneins 157
- VIII.4.3. Induction and Isolation 157
- VIII.4.4. Structural and Spectroscopic Properties 158
- VIII.4.5. Reactivity and Function 161

VIII.5. Copper-Transporting ATPases 163

Bibudhendra Sarkar

- VIII.5.1. Introduction: Wilson and Menkes Diseases 163
- VIII.5.2. Structure and Function 163
- VIII.5.3. Metal Ion Binding and Conformational Changes 165

VIII.6. Metallochaperones 166

Thomas V. O’Halloran and Valeria Culotta

- VIII.6.1. Introduction 166
- VIII.6.2. The Need for Metallochaperones 167
- VIII.6.3. COX17 169
- VIII.6.4. ATX1 169
- VIII.6.5. Copper Chaperone for SOD1 171
- VIII.6.6. Metallochaperones for Other Metals? 172
- VIII.6.7. Concluding Remarks 173

Chapter IX Hydrolytic Chemistry 175

J. A. Cowan

- IX.1. Metal-Dependent Lyase and Hydrolase Enzymes. (I) General Metabolism 175
- IX.1.1. Introduction 175
- IX.1.2. Magnesium 176
- IX.1.3. Zinc 179
- IX.1.4. Manganese 183

- IX.2. Metal-Dependent Lyase and Hydrolase Enzymes. (II) Nucleic Acid Biochemistry 185
- IX.2.1. Introduction 185
- IX.2.2. Magnesium-Dependent Enzymes 185
- IX.2.3. Calcium 192
- IX.2.4. Zinc 194
IX.3. Urease 198
Stefano Ciurli
IX.3.1. Introduction 198
IX.3.2. The Structure of Native Urease 199
IX.3.3. The Structure of Urease Complexed with Transition State and Substrate Analogues 200
IX.3.4. The Structure-Based Mechanism 202
IX.3.5. The Structure of Urease Complexed with Competitive Inhibitors 204
IX.3.6. The Molecular Basis for \textit{in vivo} Urease Activation and Nickel Trafficking 206

IX.4. Aconitase 209
M. Claire Kennedy and Helmut Beinert
IX.4.1. Introduction 209
IX.4.2. Stereochemistry of the Citrate–Isocitrate Isomerase Reaction 210
IX.4.3. Characterization and Function of the Fe–S Cluster 211
IX.4.4. Active Site Amino Acid Residues and the Reaction Mechanism 212
IX.4.5. Cluster Reactivity and Cellular Function 214

IX.5. Catalytic Nucleic Acids 215
Yi Lu
IX.5.1. Introduction and Discovery of Catalytic Nucleic Acids 215
IX.5.2. Scope and Efficiency of Catalytic Nucleic Acids 216
IX.5.3. Classification of Catalytic Nucleic Acids with Hydrolytic Activity 217
IX.5.4. Metal Ions as Important Cofactors in Catalytic Nucleic Acids 219
IX.5.5. Interactions between Metal Ions and Catalytic Nucleic Acids 221
IX.5.6. The Role of Metal Ions in Catalytic Nucleic Acids 222
IX.5.7. Expanding the Repertoire of Catalytic Nucleic Acids with Transition Metal Ions 225
IX.5.8. Application of Catalytic Nucleic Acids 225
IX.5.9. From Metalloproteins to Metallocatalytic Nucleic Acids 226

Chapter X Electron Transfer, Respiration, and Photosynthesis 229
X.1. Electron-Transfer Proteins 229
Lucia Banci, Ivano Bertini, Claudio Luchinat, and Paola Turano
X.1.1. Introduction 229
X.1.2. Determinants of Reduction Potentials 230
X.1.3. Iron–Sulfur Proteins 239
X.1.4. Cytochromes 245
X.1.5. Copper Proteins 250
X.1.6. A Further Comment on the Size of the Cofactor 254
X.1.7. Donor–Acceptor Interactions 255
X.2. Electron Transfer through Proteins 261

Harry B. Gray and Jay R. Winkler

X.2.1. Introduction 261
X.2.2. Basic Concepts 261
X.2.3. Semiclassical Theory of Electron Transfer 264

X.3. Photosynthesis and Respiration 278

Shelagh Ferguson-Miller, Gerald T. Babcock, and Charles Yocum

X.3.1. Introduction 278
X.3.2. Qualitative Aspects of Mitchell's Chemiosmotic Hypothesis for Phosphorylation 279
X.3.3. An Interlude: Reduction Potentials 279
X.3.4. Maximizing Free Energy and ATP Production 281
X.3.5. Quantitative Aspects of Mitchell's Chemiosmotic Hypothesis for Phosphorylation 283
X.3.6. Cellular Structures Involved in the Energy Transduction Process: Similarities among Bacteria, Mitochondria, and Chloroplasts 284
X.3.7. The Respiratory Chain 285
X.3.8. The Photosynthetic Electron-Transfer Chain 291
X.3.9. A Common Underlying Theme in Biological O₂/H₂O Metabolism: Metalloradical Active Sites 299

X.4. Dioxygen Production: Photosystem II 302

Charles Yocum and Gerald T. Babcock

X.4.1. Introduction 302
X.4.2. Photosystem II Activity: Light-Catalyzed Two- and Four-Electron Redox Chemistry 303
X.4.3. Photosystem II Protein Structure and Redox Cofactors 305
X.4.4. Inorganic Ions of PSII 308
X.4.5. Modeling the Structure of the PSII Mn Cluster 313
X.4.6. Proposals for the Mechanism of Photosynthetic Water Oxidation 314

Chapter XI Oxygen Metabolism (co-edited by Lawrence Que, Jr.) 319

XI.1. Dioxygen Reactivity and Toxicity 319

Joan Selverstone Valentine

XI.1.1. Introduction 319
XI.1.2. Chemistry of Dioxygen 320
XI.1.3. Dioxygen Toxicity 325

XI.2. Superoxide Dismutases and Reductases 331

Joan Selverstone Valentine

XI.2.1. Introduction 331
XI.2.2. Superoxide Chemistry 332
XI.2.3. Superoxide Dismutase and Superoxide Reductase Mechanistic Principles 333
XI.2.4. Superoxide Dismutase and Superoxide Reductase Enzymes 335
XI.3. Peroxidase and Catalases

Thomas L. Poulos

XI.3.1. Introduction

XI.3.2. Overall Structure

XI.3.3. Active-Site Structure

XI.3.4. Mechanism

XI.3.5. Reduction of Compounds I and II

XI.4. Dioxygen Carriers

Geoffrey B. Jameson and James A. Ibers

XI.4.1. Introduction: Biological Dioxygen Transport Systems

XI.4.2. Thermodynamic and Kinetic Aspects of Dioxygen Transport

XI.4.3. Cooperativity and Dioxygen Transport

XI.4.4. Biological Dioxygen Carriers

XI.4.5. Protein Control of the Chemistry of Dioxygen, Iron, Copper, and Cobalt

XI.4.6. Structural Basis of Ligand Affinities of Dioxygen Carriers

XI.4.7. Final Remarks

XI.5. Dioxygen Activating Enzymes

Lawrence Que, Jr.

XI.5.1. Introduction: Converting Carriers into Activators

XI.5.2. Mononuclear Nonheme Metal Centers That Activate Dioxygen

XI.6. Reducing Dioxygen to Water: Cytochrome \(\text{c} \) Oxidase

Shinya Yoshikawa

XI.6.1. Introduction

XI.6.2. Lessons from the X-Ray Structures of Bovine Heart Cytochrome \(\text{c} \) Oxidase

XI.6.3. Reaction Mechanism

XI.7. Reducing Dioxygen to Water: Multi-Copper Oxidases

Peter F. Lindley

XI.7.1. Introduction

XI.7.2. Occurrence and General Properties

XI.7.3. Functions

XI.7.4. X-Ray Structures

XI.7.5. Structure–Function Relationships

XI.7.6. Perspectives

XI.8. Reducing Dioxygen to Water: Mechanistic Considerations

Lawrence Que, Jr.
XIII.4. Fe–S Clusters in Radical Generation 582

 Joan B. Broderick

XIII.4.1. Introduction 582
XIII.4.2. Glycyl Radical Generation 586
XIII.4.3. Isomerization Reactions 589
XIII.4.4. Cofactor Biosynthesis 590
XIII.4.5. DNA Repair 592
XIII.4.6. Radical-SAM Enzymes: Unifying Themes 593

XIII.5. Galactose Oxidase 595

 James A. Whittaker

XIII.5.1. Introduction 595
XIII.5.2. Active Site Structure 596
XIII.5.3. Oxidation–Reduction Chemistry 597
XIII.5.4. Catalytic Turnover Mechanism 598
XIII.5.5. Mechanism of Cofactor Biogenesis 600

XIII.6. Amine Oxidases 601

 David M. Dooley

XIII.6.1. Introduction 601
XIII.6.2. Structural Characterization 602
XIII.6.3. Structure–Function Relationship 604
XIII.6.4. Mechanistic Considerations 604
XIII.6.5. Biogenesis of Amine Oxidases 606
XIII.6.6. Conclusion 606

XIII.7. Lipoxygenase 607

 Judith Klinman and Keith Rickert

XIII.7.1. Introduction 607
XIII.7.2. Structure 608
XIII.7.3. Mechanism 608
XIII.7.4. Kinetics 611

Chapter XIV Metal Ion Receptors and Signaling 613

XIV.1. Metalloregulatory Proteins 613

 Dennis R. Winge

XIV.1.1. Introduction: Structural Metal Sites 613
XIV.1.2. Structural Zn Domains 614
XIV.1.3. Metal Ion Signaling 618
XIV.1.4. Metalloregulatory Proteins 620
XIV.1.5. Metalloregulation of Transcription 620
XIV.1.6. Metalloregulation of Post-Transcriptional Processes 625
XIV.1.7. Post-Translational Metalloregulation 626

XIV.2. Structural Zinc-Binding Domains 628

 John S. Magyar and Paola Turano

XIV.2.1. Introduction 628
XIV.2.2. Molecular and Macromolecular Interactions 628
XIV.2.3. Metal Coordination and Substitution 630
XIV.2.4. Zinc Fingers and Protein Design 632
XIV.3. Calcium in Mammalian Cells

Torbjörn Drakenberg, Bryan Finn, and Sture Forsén

XIV.3.1. Introduction

XIV.3.2. Concentration Levels of Ca\(^{2+}\) in Higher Organisms

XIV.3.3. The Intracellular Ca\(^{2+}\)-Signaling System

XIV.3.4. A Widespread Ca\(^{2+}\)-Binding Motif: The EF-Hand

XIV.3.5. Ca\(^{2+}\) Induced Structural Changes in Modulator Proteins (Calmodulin, Troponin C)

XIV.3.6. Ca\(^{2+}\) Binding in Buffer or Transporter Proteins

XIV.4. Nitric Oxide

Thomas L. Poulos

XIV.4.1. Introduction: Physiological Role and Chemistry of Nitric Oxide

XIV.4.2. Chemistry of Oxygen Activation

XIV.4.3. Overview of Nitric Oxide Synthase Architecture

XIV.4.4. Nitric Oxide Synthase Mechanism

Cell Biology, Biochemistry, and Evolution: Tutorial I

Edith B. Gralla and Aram Nersissian

T.I.1. Life’s Diversity

T.I.2. Evolutionary History

T.I.3. Genomes and Proteomes

T.I.4. Cellular Components

T.I.5. Metabolism

Fundamentals of Coordination Chemistry: Tutorial II

James A. Roe, Bryan F. Shaw, and Joan Selverstone Valentine

T.II.1. Introduction

T.II.2. Complexation Equilibria in Water

T.II.3. The Effect of Metal Ions on the pK\(_a\) of Ligands

T.II.4. Ligand Specificity: Hard versus Soft

T.II.5. Coordination Chemistry and Ligand-Field Theory

T.II.6. Consequences of Ligand-Field Theory

T.II.7. Kinetic Aspects of Metal Ion Binding

T.II.8. Redox Potentials and Electron-Transfer Reactions

Appendix I Abbreviations

Appendix II Glossary

Appendix III The Literature of Biological Inorganic Chemistry

Appendix IV Introduction to the Protein Data Bank (PDB)

Index
List of Contributors

Philip Aisen, Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461

Michael W. W. Adams, Department of Biochemistry and Molecular Biology and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602

Bruce A. Averill, Department of Chemistry, University of Toledo, Toledo, Ohio 43606

Gerald T. Babcock, Department of Chemistry, Michigan State University, East Lansing, Michigan 48828

Lucia Banci, Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy 50019

Helmut Beinert, Institute for Enzyme Research, University of Wisconsin, Madison, Wisconsin 53726

Ivano Bertini, Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy 50019

Joan B. Broderick, Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717

Alison Butler, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106

Stefano Ciurli, Laboratory of Bioinorganic Chemistry, Department of Agro-Environmental Science and Technology, University of Bologna, I-40127, Bologna, Italy

J. A. Cowan, Chemistry, Ohio State University, Columbus, Ohio 43210

Valeria Culotta, Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205

David M. Dooley, Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
Torbjörn Drakenberg, Department of Biophysical Chemistry, Lund University, SE-22100 Lund, Sweden

David J. Eide, Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706

Shelagh Ferguson-Miller, Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824

Bryan Finn, IT Department, Swedish University of Agricultural Sciences, SE-23053 Alnarp, Sweden

Marc Fontecave, Université Joseph Fourier, CNRS–CEA, CEA–Grenoble, 38054 Grenoble, France

Sture Forsén, Department of Biophysical Chemistry, Lund University, SE-22100 Lund, Sweden

C. David Garner, The School of Chemistry, The University of Nottingham, Nottingham NG7 2RD, United Kingdom

Edith B. Gralla, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095

Harry B. Gray, Beckman Institute, California Institute of Technology, Pasadena, California 91125

Hans-Juergen Hartmann, Anorganische Biochemie Physiologisch Chemisches Institut, University of Tübingen, Tübingen, Germany

James A. Ibers, Department of Chemistry, Northwestern University, Evanston, Illinois 60208

Geoffrey B. Jameson, Centre for Structural Biology, Institute of Fundamental Sciences, Chemistry, Massey University, Palmerston North, New Zealand

M. Claire Kennedy, Department of Chemistry, Gannon University, Erie, Pennsylvania 16561

Judith Klinman, Departments of Chemistry and of Molecular and Cell Biology, University of California, Berkeley, California 94720

Jean LeGall, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

Peter F. Lindley, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

Yi Lu, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Claudio Luchinat, Magnetic Resonance Center and Department of Agricultural Biotechnology, University of Florence, Sesto Fiorentino, Italy 50019

Thomas J. Lyons, Department of Chemistry, University of Florida, Gainesville, Florida 32611
John S. Magyar, Beckman Institute, California Institute of Technology, Pasadena, California 91125

Stephen Mann, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom

Michael J. Maroney, Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003

Jonathan McMaster, The School of Chemistry, The University of Nottingham, Nottingham NG7 2RD, United Kingdom

Christopher Muncie, School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom

Aram Nersissian, Chemistry Department, Occidental College, Los Angeles, California 90041

William E. Newton, Department of Biochemistry, The Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Thomas V. O’Halloran, Chemistry Department, Northwestern University, Evanston, IL 60208

Thomas L. Poulos, Departments of Molecular Biology and Biochemistry, Chemistry, and Physiology and Biophysics, University of California, Irvine, Irvine, California 92617

Lawrence Que, Jr., Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455

Stephen W. Ragsdale, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588

Keith Rickert, Department of Cancer Research WP26-462, Merck & Co., P. O. Box 4, West Point, Pennsylvania 19486

James A. Roe, Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, California 90045

Roopali Roy, Department of Biochemistry and Molecular Biology and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602

Peter J. Sadler, School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom

Bibudhendra Sarkar, Structural Biology and Biochemistry, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario M5G1X8 Canada

Bryan F. Shaw, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095

Michelle A. Shipman, School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom

Edward I. Stiefel, Department of Chemistry, Princeton University, Princeton, New Jersey 08544
List of Contributors

JoAnne Stubbe, Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Elizabeth C. Theil, Children’s Hospital Oakland Research Institute and the University of California, Berkeley, Oakland, California 94609

Paola Turano, Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy 50019

Joan Selverstone Valentine, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095

Ulrich Weser, Anorganische Biochemie Physiologisch Chemisches Institut, University of Tübingen, Tübingen, Germany

James W. Whittaker, Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, Oregon 97006

Dennis R. Winge, Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132

Jay R. Winkler, Beckman Institute, California Institute of Technology, Pasadena, California 91125

António V. Xavier, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

Charles Yocum, Chemistry and MCD Biology, University of Michigan, Ann Arbor, Michigan 48109

Shinya Yoshikawa, Department of Life Science, University of Hyogo, Kamigohri Akoh, Hyogo 678-1297, Japan
Life depends on the proper functioning of proteins and nucleic acids that very often are in combinations with metal ions. Elucidation of the structures and reactivities of metalloproteins and other metallobiomolecules is the central goal of biological inorganic chemistry.

One of the grand challenges of the 21st century is to deduce how a specific gene sequence codes for a metalloprotein. Such knowledge of genomic maps will contribute to the goal of understanding the molecular mechanisms of life. Specific annotations to a sequence often allude to the requirement of metals for protein function, but it is not yet possible to read that information from sequence alone. Work in biological inorganic chemistry is critically important in this context.

Our goal at the outset was to capture the full vibrancy of the field in a textbook. Our book is divided into Part A, “Overviews of Biological Inorganic Chemistry,” which sets forth the unifying principles of the field, and Part B, “Metal Ion Containing Biological Systems,” which treats specific systems in detail. Tutorials are included for those who wish to review the basics of biology and inorganic chemistry; and the Appendices provide useful information, as does “Physical Methods in Bioinorganic Chemistry” (see Appendix III), which we highly recommend.

Biological inorganic chemistry is a very hot area. It has been our good fortune to work with many exceptionally talented contributors in putting together a volume that we believe will be a valuable resource both for young investigators and for more senior scholars in the field.

—The Editors
Acknowledgements

Working with so many gifted authors has been a real treat for us. The project also has presented many challenges. We would not have made it to the finish line without the able assistance of many colleagues. First and foremost, the brilliant editorial hand of Jeannette Stiefel made the manuscript a real book rather than just a random collection of vignettes. We cannot thank Jeannette enough for her contributions to the final product. In Florence, Paola Turano kept everyone in line; she was simply fantastic! At Caltech, John Magyar helped immensely in reading all the proof sheets and offering many suggestions for improvements. Both John and Paola played a leading role in the most critical stages of the project.

We are greatly in debt to Larry Que for his contributions; in addition to numerous helpful suggestions over the course of the project, Larry worked very closely with us in all aspects of writing and editing Chapter 11. We only have ourselves to blame if the final product does not meet his very high standards.

Edith Gralla, Aram Nersessian, and Bryan Shaw at UCLA, and Jim Roe at Loyola Marymount put together tutorials that have greatly enhanced the pedagogical value of the book. The book was class tested at Princeton and UCLA. We thank all the students who made helpful comments.

We lost three coauthors during the course of the project. Jerry Babcock, Jean LeGall, and Antonio Xavier were great scientists and dear friends. We miss them very much.

Our publisher, Bruce Armbruster, and his team at University Science Books cheered us on through what seemed to some of us to be an eternity. We especially thank Kathy Armbruster for her patience and unwavering support, Jane Ellis for her persistence and good humor, and Mark Ong for putting all the pieces together to bring the project to a successful conclusion. We acknowledge six other colleagues: Catherine May and Rick Jackson at Caltech; Margaret Williams and Rhea Rever at UCLA; Ingrid Hughes at Princeton; and Simona Fedi at CERM (Florence) with thanks for their dedication to our cause.

Ivano Bertini
Harry B. Gray
Edward I. Stiefel
Joan Selverstone Valentine