Asymmetric Induction in Enantioselective Catalysis

4.1 Transmission of Asymmetry ... 115
 4.1.1 C\textsubscript{2}- vs. Non-C\textsubscript{2}-Symmetric Catalysts 116
 4.1.2 Quadrant Diagrams ... 117

4.2 Chiral Metal Complexes from Chiral Ligands 118
 4.2.1 Bis(oxazolines) ... 118
 4.2.1.a Control of Nucleophile Trajectory by Chiral Ligands 119
 4.2.1.b Indirect Control of Nucleophile Trajectory via Substrate Relay .. 121
 4.2.2 BINOL-Based Lewis Acids 123

4.3 Asymmetric Induction with Chiral Metallocene Catalysts 126

4.4 Transmission of Asymmetry to Substituents within a Metal–Ligand Adduct ... 128
 4.4.1 Conformations of Chiral Metallacycles: BINAP and TADDOL 129
 4.4.2 BINAP-Based Catalysts ... 129
 4.4.3 TADDOL-Based Complexes .. 135

4.5 Environments from Ligands That Form Diastereotopic Complexes 140
 4.5.1 Coordination of Diastereotopic Lone Pairs 140
 4.5.2 Binding of Diastereotopic Groups 142

4.6 Electronic Asymmetry of Coordination Sites 143

4.7 Steric Bias of Configurationally Dynamic Ligand Stereocenters 147
 4.7.1 Ligands with Chiral Relay Groups Not Directly Connected to the Metal ... 147
 4.7.2 Catalysts That Are Chiral at the Metal Center 149
 4.7.3 Ligands That Can Adopt Atropisomeric Conformations 151
 4.7.3.a Axial Chirality Induced in Backbone Biphenyl-Based Ligands . 151
 4.7.3.b Axial Chirality Induced in Pendant Biphenyl-Based Ligands . . 153
 4.7.3.c Axial Chirality Induced in Atropisomeric Amides 155
One of the most important goals of asymmetric catalysis is the rational design and optimization of new catalysts. Although this seems like a straightforward exercise, it is far from it. Our understanding of the structure and function of catalysts, and the mechanisms of asymmetric reactions, is rudimentary. Although the lack of emphasis on mechanistic studies is certainly a contributing factor, it is often found that the reaction mechanisms are considerably more complex than anticipated. Furthermore, the difference in energy between diastereomeric transition states ($\Delta \Delta G^\ddagger$), which lead to enantiomeric products, is often small, complicating rational catalyst optimization. Given these challenges, it is not surprising that most catalyst optimization is performed with a combination of rational design, chemical intuition, and serendipity.

To understand how asymmetry is transmitted from the catalyst to the substrate, it is necessary to know the three-dimensional structure of the ligated catalyst. This is particularly challenging if the ligand retains a high degree of conformational flexibility when bonded to the metal, because it is more difficult to determine the conformation of the ligand in the transition state. For these reasons, it is easiest to begin studying the transmission of asymmetry in catalysts where the ligand–metal adduct has little rotational freedom.

This chapter examines how different types of chiral catalysts transmit asymmetry in enantioselective reactions. Emphasis is initially placed on ligands and catalysts that are well-defined. As the chapter progresses, and catalysts with additional degrees of conformational flexibility are introduced, the proposed structures and transition states are more speculative. Nonetheless, much can be learned from such systems.

4.1 Transmission of Asymmetry

In many cases asymmetric catalysts often bind and react preferentially with one of the prochiral faces of the substrate. In others, asymmetric catalysts bind the substrate and shield one of the prochiral faces, thus impeding reaction at that face. Despite the simplicity of these strategies, the mechanics of transmission of asymmetry from the catalyst to the substrate are complex and not well-understood in many systems. Furthermore, there are many classes of chiral ligands and catalysts, and the nature of
asymmetry transmission from the catalyst to the substrate varies greatly. Thus, this section first introduces some of the means by which the asymmetry of the catalyst is transmitted to the substrate.

The most common method to transfer asymmetry from a catalyst to the substrate relies on steric biasing. Other catalyst–substrate interactions, such as π-interactions between aromatic groups on the catalyst and substrate, or hydrogen bonding between the catalyst and substrate, etc., can also play important roles and may be used in combination with steric biasing (see Chapter 5).

4.1.1 C₂-symmetric vs. Non-C₂-symmetric Catalysts

C₂-symmetric catalysts have received much attention and merit special consideration in the context of the transmission of asymmetry. In the early days of asymmetric catalysis, it was often observed that catalysts containing C₂-symmetric ligands were, in general, more enantioselective than those with non-C₂-symmetric ligands. It was proposed that this selectivity resulted from the smaller number of metal–substrate adducts and transition states available to these catalysts than are available to catalysts containing less-symmetric ligands.¹⁻³ This principle is illustrated in the context of the asymmetric allylation reaction in Figure 4.1. The most common mode of nucleophilic attack on η³-allyl is on the face opposite the bulky palladium center.⁴⁻⁵ Recall that interconversion of the diastereomeric intermediates occurs within the coordina-

![Figure 4.1](image-url)

Figure 4.1. Palladium π-allyl complexes with a non-C₂-symmetric P–N ligand and a C₂-symmetric P–P ligand illustrating the number of diastereomeric lowest-energy transition states for nucleophilic attack. The chiral ligand backbone and the Pd–allyl bond are omitted for clarity.
A generic model for steric biasing of chiral metal–ligand adducts has been advanced to facilitate the prediction of the facial stereoselectivity in catalyst–substrate complexes and transition states. In this model, the environment around the metal is divided into quadrants in which the horizontal dividing line is congruent with a plane or pseudoplane in the catalyst. For simplicity, the quadrant diagram is given for a \(C_2 \)-symmetric catalyst (Figure 4.4a). The two shaded diagonal quadrants represent space that is occupied by substituents on the ligand that extend forward, whereas the unshaded rectangles correspond to less-occupied space. Binding of the prochiral faces of an olefin to a metal, for example, would give rise to diastereomers in which the
more-stable diastereomer contains the R and R' substituents positioned in the open, unshaded quadrants (Figure 4.4b vs. Figure 4.4c).

The means by which metal complexes of chiral ligands block quadrants depends on the nature of the ligand and the metal–ligand adduct. In some cases, the ligands possess stereogenic centers in close proximity to the metal. In other cases, the stereogenic centers are located so far from the metal it is not obvious how the effect of these distant stereocenters can be transmitted to the site of reaction. We describe examples of each of these in the following sections.

4.2 Chiral Metal Complexes from Chiral Ligands

4.2.1 Bisoxazolines

Two popular families of ligands that provide rigid chiral environments on coordination are the C₂-symmetric bisoxazoline ligands, such as Box and PyBox, and the semicorrin ligands. The structures of these ligands and their coordination complexes...
are shown in Figure 4.5. In conjunction with a variety of main-group and transition
metals, these ligands form highly enantioselective catalysts that have been success-
fully used in many asymmetric reactions, including the aldol, cyclopropana-
tion, aziridination, Diels–Alder, Michael, and ene reactions. The nearly
planar metallacycle formed on binding the bidentate ligand, and the presence of the
p敬业的 five-membered rings, limit the flexibility of these ligand systems. The com-
mon feature of the ligands in Figure 4.5 is that the substituents at the stereogenic cen-
ters extend forward, positioning them in close proximity to the metal center and the
substrate binding sites. As will be illustrated below, the well-defined asymmetric en-
vironment of these ligands facilitates use of quadrant diagrams. Electronically, the
anionic nature of the semicorrin ligands makes them stronger electron donors than
the neutral bisoxazoline ligands. As a result, complexes of the semicorrin ligands are
less Lewis acidic and will exhibit stronger binding of the chiral ligand.

4.2.1.a Control of Nucleophile Trajectory by Chiral Ligands

Several successful asymmetric transformations have been developed using chelating
substrates in combination with copper(II)–bisoxazoline complexes, creating well-
defined substrate–catalyst adducts that allow for more efficient catalyst optimiza-
tion. The crystal structure of [(S,S)-t-Bu-Box]Cu(OH)₂(SbF₆)₂ shown in Figure 4.6

![Figure 4.6. Structure of [(S,S)-t-Bu-Box]Cu(OH)₂(SbF₆)₂, illustrating the distorted square-planar geometry of the copper and the ligand environment.](image)
illustrates the pseudo-square-planar geometry of the Jahn–Teller-distorted \(d^9 \)-copper center. The SbF\(_6\) counterions are not interacting with the copper center, and are not shown in the figure. The \([S,S]-t\text{-Bu-Box}]Cu^{2+}\) catalyst has proven particularly effective in the asymmetric Diels–Alder reaction with chelating imide dienophiles (Equation 4.1), which prefer the \(s \)-cis conformation when coordinated (Figure 4.7).

\[
\begin{align*}
R=\text{H} & : 95\% \text{ ee} \\
R=\text{Me} & : 96\% \text{ ee} \\
R=\text{Ph} & : 96\% \text{ ee} \\
R=\text{Cl} & : 94\% \text{ ee}
\end{align*}
\]

Figure 4.7. The \(s \)-cis conformation of the dienophile is strongly favored over the \(s \)-trans conformer when bound in a bidentate fashion.

Semiempirical calculations of copper(II) (Box)Cu(sub)\(^{2+}\) complexes (where sub = bidentate dicarbonyl substrate) suggest a similar degree of distortion from square-planar geometry to that observed in the structure of \([S,S]-t\text{-Bu-Box})Cu(H_2O)_2^{2+}\) in Figure 4.6.\(^{14}\) To simplify the understanding of the stereochemical outcome of the reaction (Equation 4.1), the nearly planar backbone of \([S,S]-t\text{-Bu-Box})Cu^{2+}\) is represented by a horizontal line with the protruding substituents extending forward (Figure 4.8). Upon coordination of the imide substrate to \([S,S]-t\text{-Bu-Box})Cu^{2+}\), the

\[
\begin{align*}
\text{ON} & \quad \text{OO} \\
\text{R} & \quad \text{ON} \quad \text{OO}
\end{align*}
\]

Figure 4.8. Proposed models for the stereochemical control in the Diels–Alder reaction. a) The bisoxazoline ligand is represented by the horizontal line and protruding \(t \)-Bu groups. b) A quadrant diagram for the same facial selectivity.
prochiral faces of the dienophile are in distinctly different steric environments, with the Si face (i.e., the Si face of the alkene) blocked by the protruding t-Bu group of the t-Bu-Box ligand. Attack of the diene, therefore, takes place at the less-hindered Re face with excellent enantioselectivities (Equation 4.1). This model for facial selectivity with bis(oxazoline) can be applied to several asymmetric reactions involving chelating dicarbonyl substrates and the (Box)Cu$^{2+}$ family of catalysts, provided that the copper geometry is close to square-planar in the catalyst–substrate adducts.

When using such a model for bisoxazoline-based catalysts, caution must be exercised, because changes in metal geometry or coordination number will impact the enantioselectivity. For example, substitution of Cu(II) for its neighbor Zn(II) forming $[(S,S)$-t-Bu-Box]$Zn(SbF$_6$)$_2$, resulted in formation of the opposite enantiomer of the product in 56% ee (Equation 4.2). Likewise, the same facial selection was observed for $[(S,S)$-Ph-Box]$Zn(SbF$_6$)$_2$, which gave the product in 92% ee. In changing the metal geometry from distorted square-planar (Cu$^{2+}$) to tetrahedral (Zn$^{2+}$), the Re face is now shielded (Figure 4.9), in contrast to the Cu(II) complex (Figure 4.8). Furthermore, switching to the magnesium catalyst, which is also proposed to have the tetrahedral geometry, again gives the (R) enantiomer. It is also noteworthy that the Fe(III)–bis(oxazoline) catalysts, which are likely octahedral, gave the same stereochemistry as the Zn(II) and Mg(II) complexes.

![Equation 4.2](image)

Figure 4.9. Proposed model for the stereochemical control in the Diels–Alder reaction. The bisoxazoline ligand is represented by the horizontal line and protruding t-Bu groups.

4.2.1.b Indirect Control of Nucleophile Trajectory via Substrate Relay

Analysis of the stereochemical outcome of a reaction with bis(oxazoline)-based catalysts becomes more difficult when the trajectory of the attacking nucleophile is parallel to the plane defined by the nitrogens of the ligand and the metal center. An
interesting example of this behavior arises in the Tsuji–Trost asymmetric allylic-alkylation reaction.22,23 The key steps and intermediates are shown in Figure 4.10. Re- action of either enantiomer of the allylic-acetate with a (Box)Pd(0) intermediate leads to formation of a η3-allyl complex. The nucleophile, KCH(CO\textsubscript{2}Me)\textsubscript{2}, attacks the η3-allyl termini from the face opposite the palladium. In the presence of the chiral bisoxazoline ligand, the nucleophile preferentially attacks one of the two termini-leading to the major enantiomer, while the minor enantiomer, is generated by attack at the other terminus.

Insight into the factors that control the regioselectivity of the nucleophilic attack and, therefore, the enantioselectivity, were gleaned from X-ray crystallographic studies of [(Box)Pd(η3-allyl)]+ derivatives. In the structure of the parent cation, [(Bz-Box)Pd(allyl)]+, the palladium has the expected square-planar geometry and the (Bz-Box)Pd metallacycle is nearly planar (Figure 4.11). In contrast, in the structure of the intermediate, [(Box)Pd(1,3-diphenylallyl)]+, there are significant nonbonded interactions between a benzyl substituent of the ligand and the adjacent phenyl group of the η3-allyl. To minimize the steric repulsion between these groups, the metallacycle has distorted markedly from planarity, as depicted in Figure 4.11. Furthermore, there is a lengthening of the Pd–N and Pd–C bond lengths associated with these interacting groups (Figure 4.11).

![Figure 4.10. The mechanism of the asymmetric allylation reaction (BSA = bissilylacetamide).](image)

![Figure 4.11. Drawings of (Bz-Box)Pd(allyl)+ and (Bz-Box)Pd(1,3-diphenylallyl)+ based on the X-ray crystal structures. Bond distances are in angstroms (Å).](image)
Based on the configuration of the product formed on reaction of \([(\text{Bz-Box})\text{Pd}(1,3-\text{diphenylallyl})]^+\) with the nucleophile, attack has occurred on the allyl terminus with the elongated Pd–C bond. It has been suggested that attack at the more crowded position is favored. As the reaction occurs, the forming carbon–carbon double bond rotates into the plane containing the Pd and nitrogen atoms of the ligand (Figure 4.12). Attack at the more-hindered position results in a reduction of nonbonded interactions in the transition state leading to the palladium–olefin complex.\(^{10}\) Inspection of the proposed geometries of the olefin products highlights the differences in stability of the diastereomeric products (Figure 4.12). The idea that the regioselectivity of the nucleophilic attack is controlled by the interaction of the bound substrate with the ligand can be contrasted with the more commonly invoked rational for asymmetric induction, which involves direct interaction of the nucleophile with the chiral ligand.

4.2.2 BINOL-Based Lewis Acids

An important class of “privileged ligands” is based on the parent atropisomeric BINOL (1,1′-bi-2-naphthol) (Figure 4.13).\(^{24}\) BINOL is fairly stable to racemization because of the steric hindrance to rotation about the pivotal 1,1′-bond. Barriers to racemization of BINOL have been determined to be 37–38 kcal/mol.\(^{25,26}\) No racemization was detected on heating to 100 °C in a dioxane/water mixture for 24 h, although addition of strong acid or base will cause racemization at this temperature.\(^{26}\) BINOL derivatives bind well to many main-group, transition-metal, and lanthanide
compounds to form catalysts that exhibit exceptionally high levels of enantioselectivity. On binding to metals, the BINOLate ligand forms a rigid chiral metallacycle. Figure 4.14 illustrates the skewed conformation of the BINOLate metallacycle viewed from the O–M–O plane.

Numerous highly enantioselective catalysts employ the parent BINOL ligand. In addition, many BINOL derivatives have been introduced and used successfully in asymmetric catalysis. In understanding how asymmetry is conveyed in BINOLate-based catalysts, it is easiest to examine systems substituted at the 3,3'-positions, because the substituents typically extend in the direction of the substrate binding site (see below). In contrast, the hydrogens at the 3,3'-positions of the parent BINOLate ligand do not protrude into the metal binding site (Figure 4.14). Consequently, the transfer of asymmetry with BINOLate-based catalysts is poorly understood. It is possible that the skewed conformation of the BINOLate ligand causes an electronic asymmetry at the metal center that influences the transfer of asymmetry by controlling the orientation of substrate binding (see Section 4.6). Also complicating our understanding of how the BINOLate ligand functions is the fact that many BINOLate-based catalysts involve early transition metals, such as titanium or zirconium, or lanthanides. In these systems, the metal coordination number and aggregation state

Figure 4.13. Structures of the parent BINOL and common derivatives substituted at the 3,3'-positions.

Figure 4.14. Partial structure illustrating the skewed conformation of the BINOLate metallacycle bound to a pseudo-octahedral titanium center.
are often unknown. Thus, to simplify the discussion of asymmetric induction with BI-NOLate ligands, we will employ a stoichiometric Lewis acid based on boron. Boron compounds of this type are known to be tetrahedral, and as such, are monomeric.

A series of boron Lewis acids bearing ligands derived from BINOL were prepared for the Diels–Alder reaction with peri-hydroxyquinones (Figure 4.15). The peri-hydroxyquinone substrates chelate to boron, limiting the conformational flexibility of the substrate–Lewis acid adduct. The enantioselectivity in the cycloaddition reaction will be controlled by the ability of the 3,3′-substituents on the BINOL to shield one of the prochiral faces of the dienophile. Thus, when the 3,3′-dimethyl-BINOL ligand was utilized (R = Me, Figure 4.15), the enantioselectivity of the anthraquinone product was 70%. Use of the 3,3′-diphenyl BINOL (R = Ph), in which the phenyl substituents project further forward, better shielding one face of the dienophile, gave > 98% ee of the product. The stereochemical outcome can be understood by examination of the drawings in Figure 4.16. Although there is no structural information on 3,3′-diphenyl-BINOLate complexes of boron, a partial structure of this ligand bonded to a tetrahedral metal center is shown. From these views it can be seen that the phenyl groups

![Figure 4.15](image1.png)

Figure 4.15. Asymmetric Diels–Alder of peri-hydroxyquinone promoted by BINOLate–boron Lewis acids.

![Figure 4.16](image2.png)

Figure 4.16. Partial structure illustrating the skewed conformation of the 3,3′-diphenyl-BINOLate ligand bound to a tetrahedral metal center (left). The same (Ph₂-BINOLate)B fragment viewed from a different angle, with the substrate added (right). The back face of the reactive double bond is rendered inaccessible by the distant phenyl group.
block adjacent quadrants, leaving two quadrants open. Upon binding of the substrate, the distant phenyl group shelters the reactive double bond from attack on the back face, while the front face is exposed, allowing the reaction to take place.

This Diels–Alder reaction was employed in the synthesis of (+)-diepoxin \(\sigma\), which possesses antifungal, antibacterial, and antitumor activity.\(^{34}\) The dieneophile was the peri-hydroxyquinone, where \(R' = \text{OMe}\), and the diene was cyclopentadiene, which is smaller than the 2-methoxy cyclohexadiene used to generate the anthraquinone derivative in Figure 4.15. As a result, the 3,3'-diphenyl-BINOL-based system did not exhibit the same degree of steric bias and gave low ee. Further extending the length of the 3,3'-substituents was found to improve enantioselectivity. Thus, when \(R = p-(2-naphthyl)phenyl\), the enantioselectivity increased to 93%.

4.3 Asymmetric Induction with Chiral Metallocene Catalysts

Chiral group IV metallocenes have been found to polymerize terminal olefins with a high degree of stereocontrol over the polymer architecture.\(^{35}\) It is not surprising, then, that resolved versions of these metallocenes have also been successfully applied in asymmetric catalysis.\(^{36}\) The chiral ligand scaffolding around the metal center in the ansa-metallocene catalysts is conformationally limited by the ethylene tether, and therefore, fairly well-defined. This characteristic facilitates prediction of the sense of enantioselection in the reactions of these \(C_2\)-symmetric complexes. The most commonly applied ansa-metallocenes in asymmetric catalysis are based on group IV metals and ethylene-1,2-bis(\(\eta^5\)-4,5,6,7-tetrahydro-1-indenyl), abbreviated EBTHI (Figure 4.17).\(^{36,37}\)

An example of the use of such ansa-metallocene catalysts is the asymmetric reduction of imines to afford the corresponding amines. As little as 0.02 mol% catalyst can be used to generate amine products in high yields and enantioselectivities (Figure 4.18).\(^{38-43}\) The silane employed in this reaction is typically phenylsilane (\(\text{H}_3\text{SiPh}\)) or a soluble polymer, polymethylhydrosiloxane (PMHS), with the repeat unit \([\text{SiH(Me)O}]_n\).\(^{43}\)

The reaction is initiated by activation of (EBTHI)TiF\(_2\) (0.5–5 mol%) with phenylsilane, methanol, and pyrrolidine. Under these conditions, an active titanium(III) hydride is likely formed.\(^{38}\) As illustrated in Figure 4.19, the mechanism is postulated to

![Figure 4.17. Two views of the chiral ansa-metallocene complex (EBTHI)MX\(_2\).](image-url)
proceed by enantioselective insertion of the prochiral ketimine into the titanium(III) hydride to generate a secondary amide (A). In the absence of added amine, cleavage of the intermediate amide A was the turnover-limiting step. Slow addition of a primary amine, such as isobutylamine resulted in higher TOF, because the isobutyramine exchanges with the bulkier chiral amide to liberate the enantioenriched amine product. The sterically less-encumbering primary amide is more easily cleaved by the silane through a four-centered transition state to regenerate the titanium hydride and form an equivalent of silylisobutylamine.

The model for asymmetric induction for this process is illustrated in Figure 4.20, where R_L and R_S are the large and small substituents on the ketimine. Most ketimine substrates can have two isomeric forms, syn and anti, which give rise to four isomeric
transition states (Figure 4.20). In the transition states A and B with the anti isomer, A is destabilized, because interactions of R and R_S with the metallocene ring system. In contrast, in transition state B only R_S is directed toward the ligand. In the transition states with the syn ketimine, C is more favorable than D, which has both R_S and R interacting with the ligand. The stereochemistry of the products formed from cyclic ketimine, which proceed through the syn transition states, is consistent with this model.

With acyclic ketimines, reaction of the anti isomer is predicted to take place through transition state B and the syn isomer through transition state C. This dual-path reaction manifold may result in a decrease in the observed enantioselectivity, because these transition states give opposite configurations of the product. This does not appear to be a serious limitation, however. The aliphatic imine in Figure 4.18 has an anti/syn ratio of 2.6:1, but undergoes reduction with an enantioselectivity of 88%.\(^{43}\) This result suggests that the syn and anti ketimines equilibrate under the reduction conditions and the reaction proceeds primarily via transition state B.

4.4 Transmission of Asymmetry to Substituents within a Metal–Ligand Adduct

In the early days of asymmetric catalysis, it was thought essential to position the stereogenic center or centers of the ligand as close as possible to the reactive site on the metal.\(^{45}\) Initial chiral phosphines were therefore prepared that were chiral at phosphorus, as exemplified by the ligand CAMP (Figure 4.21).\(^{46}\) In hindsight, it is surprising that rhodium complexes of this ligand were fairly enantioselective, given the high
degree of rotational freedom about the phosphorus–carbon and the rhodium–phosphorus bonds. When DIOP, a chiral bidentate phosphine with two remote stereogenic centers (Figure 4.21), was introduced chemists began to appreciate the significant role that ligand conformations would play in enantioselective catalysis. The performance of catalysts based on DIOP inspired the development of the chelating ligand DiPAMP (Figure 4.21), which subsequently became the basis of a commercial synthesis of l-DOPA, a medication used in the treatment of Parkinson’s disease.45

4.4.1 Conformations of Chiral Metallacycles: BINAP and TADDOL

Given the intense interest in asymmetric catalysis, it is not surprising that the synthesis and screening of new chiral ligands remains a very active area of research. Of the myriad enantioenriched ligands that have been employed in asymmetric catalysis, a few ligand classes seem to give consistently high levels of enantioselectivities with an array of metal centers. Because of the effectiveness of these ligands across a broad range of reactions, they have been referred to as “privileged ligands.”24

4.4.2 BINAP-Based Catalysts

One of the prominent ligands in this class is the commercially available axially chiral BINAP (Figure 4.22). This ligand is chiral, because of the skewed conformation of the binaphthyl rings, and it is stable to racemization due to the high barrier to rotation about the central C–C bond. Although best known for its application in catalytic enantioselective hydrogenations of olefins and ketones, metal complexes of BINAP have found many applications in asymmetric reactions. BINAP can accommodate metals of different radii by rotating about the central aryl–aryl bond and the 2,2’-P–C

Figure 4.21. Important early chiral phosphine ligands.

Figure 4.22. Structure of (S)-BINAP.
bonds, but once coordinated, the conformation of the ligand is constrained in the rigid metallacycle.

The efficiency with which BINAP-based catalysts transmit asymmetry to substrates results from transmission of the binaphthyl backbone axial chirality to control the position and orientation of the diastereotopic phenyl substituents. The skewed conformation of the seven-membered metallacycle is chiral and is set by the binaphthyl axial stereochemistry. The phenyl groups assume pseudoaxial and pseudoequatorial positions, as can be seen in the X-ray crystal structure of the BINAP ligand bound to ruthenium (Figure 4.23). A stereoview is illustrated in Figure 4.24. The pseudoequatorial phenyl rings extend forward past the metal center and the pseudoaxial phenyl groups orient away from the metal. BINAP derivatives, of which there are many, and several chiral bidentate phosphines (see below) display these characteristics, but do not exhibit such pronounced differences in the positions of the pseudoequatorial and pseudoaxial phenyl groups. It is the combination of the protruding equatorial phenyl groups and the degree of orientation of the axial phenyl groups away from the substrate binding site that is thought to be responsible for the exquisite enantiocontrol in this ligand system. The fact that substituents in the para positions of the phenyl groups often impact the enantioselectivity of the catalyst is consistent with this hypothesis, although electronic effects may also be important. Additionally, an edge-face (CH-π) interaction between the phosphorus-bound aryl groups contributes to the differentiation of the pseudoaxial and pseudoequatorial

![Figure 4.23. Partial structure of ([S]-BINAP)Ru(O₂C-t-Bu)₂, with carboxylate ligands omitted for clarity. The pseudoequatorial phenyl rings are thrust forward, while the pseudoaxial phenyls are oriented away from the ruthenium center.](image)
phenyl groups. As such, the equatorial phenyl groups protrude with the face of the aryl forward. This important interaction can be seen in the structure in Figure 4.23 and in the stereoview in Figure 4.24.54,55

To understand the control of asymmetry in catalysts bearing the BINAP ligand, the enantioselective hydrogenation reaction with the precatalyst (BINAP)Ru(O2CR)2 from Figure 4.23 will be examined. The resultant catalyst exhibits high enantioselectivity with a wide range of substrates.56 Detailed investigations of this system have led to an understanding of the reaction mechanism,57 which is believed to proceed through a mono-hydride intermediate, and the proposal of a reliable model for the asymmetric induction.57,58

As documented in many examples, the best substrates for the asymmetric hydrogenation with this catalyst possess a pendant Lewis basic site that, along with the functional group undergoing reduction, binds to the ruthenium center, forming a chelate.56,59 This is illustrated for one of the most important classes of substrates for this catalyst, the β-keto ester (Equation 4.3). Reduction of these substrates provides access to products analogous to those formed in aldol condensations. In the model for asymmetric induction, the ketone carbonyl is thought to coordinate in a π-fashion to the ruthenium, while the ester binds through an oxygen lone pair (Figure 4.25). Due to these different binding modes, the ketone component places greater steric demands on the ruthenium–BINAP system and occupies the least-hindered site on the catalyst, as shown in Figure 4.25. In the structure on the left, the interaction of the ketone with the protruding equatorial phenyl group of the BINAP, drawn in bold, destabilizes this diastereomer. In contrast, the right-handed structure places the ketone carbonyl in the quadrant with the axial P-phenyl group, which is directed away from the substrate. Here, it is assumed that the major diastereomer of the substrate–catalyst adduct will generate the major enantiomer of the product. This assumption, however, is not always valid.60,61

Another example involves the catalytic intramolecular hydroacylation of 4-pentenals with cationic rhodium catalysts containing bidentate chiral phosphines.
This reaction takes place at room temperature in acetone or methylene chloride with turnover numbers as high as 500, and isolated yields around 90%. The catalyst precursor, \([(S)\text{-BINAP}]\text{Rh(NBD)}\text{ClO}_4 \) (where NBD = norbornadiene), was briefly treated with hydrogen to prepare the catalyst, \([(S)\text{-BINAP}]\text{Rh(sol)}_2\text{ClO}_4 \) (where sol = solvent). Based on labeling experiments, the mechanism is believed to involve initial oxidative addition of the acyl hydrogen. Like the ruthenium hydrogenation catalyst described above, the coordinatively unsaturated rhodium(III) intermediate possesses open coordination sites after the oxidative-addition step. Coordination of the pendent olefin with the C–C double bond situated roughly parallel to the Rh–H axis gives the proper alignment for the olefin insertion step (Equation 4.4). This reaction takes place at room temperature in acetone or methylene chloride with turnover numbers as high as 500, and isolated yields around 90%. The catalyst precursor, \([(S)\text{-BINAP}]\text{Rh(NBD)}\text{ClO}_4 \) (where NBD = norbornadiene), was briefly treated with hydrogen to prepare the catalyst, \([(S)\text{-BINAP}]\text{Rh(sol)}_2\text{ClO}_4 \) (where sol = solvent). Based on labeling experiments, the mechanism is believed to involve initial oxidative addition of the acyl hydrogen. Like the ruthenium hydrogenation catalyst described above, the coordinatively unsaturated rhodium(III) intermediate possesses open coordination sites after the oxidative-addition step. Coordination of the pendent olefin with the C–C double bond situated roughly parallel to the Rh–H axis gives the proper alignment for the olefin insertion step (Figure 4.26). Binding of the olefin to the rhodium will occur to minimize steric interactions between the bound substrate and the equatorial phenyl groups. In the diastereomer on the left in Figure 4.26, the bulky tert-butyl group lies in the quadrant with the pseudoaxial phenyl group, which is directed away. In contrast, the other diastereomer results in severe steric interactions between the protruding pseudoaxial phenyl group and the tert-butyl group, destabilizing this isomer. The next step in the mechanism is the olefin insertion and subsequent reductive elimination to generate the product with high enantioselectivity.

The quadrant model outlined in Section 4.1.2 has been used to facilitate the prediction of the facial stereoselectivity in reactions with catalysts bearing chiral bidentate phosphines (Figure 4.27). The protruding equatorial phenyl groups occupy the
two shaded diagram quadrants, blocking encroachment into these regions. The quadrants containing the pseudoaxial phenyl groups are unshaded. In order to minimize nonbonded interactions, the substrate avoids contact with the pseudoequatorial phenyl groups (i.e., the shaded regions of the model).

Other types of bidentate phosphine ligands exhibit a similar disposition of the phenyl substituents to BINAP. For example, the five-membered metallacycle formed on binding of (2S,3S)-bis(diphenylphosphino)butane [(S,S)-chiraphos, Figure 4.28] to metals adopts a twisted conformation. Although five-membered rings are normally conformationally flexible, the conformation of chiraphos is controlled by the methyl substituents on the ligand backbone, which are pseudoequatorially disposed in the lowest-energy conformation. The conformational twist of the metallacycle causes the phenyl groups to adopt pseudoaxial and pseudoequatorial positions (Figure 4.28). Based on structural information, the pseudoequatorial and pseudoaxial phenyl groups of chiraphos are not as dissimilar in their positions when compared to those of BINAP. As a result, the pseudoequatorial phenyl groups do not protrude to the same extent as they do in BINAP complexes, nor are the pseudoaxial phenyl rings of chiraphos directed away from the metal to the same degree. The \(sp^2 \) hybridized carbons
of the seven-membered metallacycle derived from BINAP induce a conformation that is more skewed than metallacycles with \(sp^3 \) hybridized carbons in the backbone, and thus create greater distinction between the axial and equatorial phenyl groups.

Both (S)-BINAP and (S,S)-chiraphos have been employed in the asymmetric acylation reaction in Figure 4.29. With simple substrates, where \(R = \text{Me or } i-	ext{Pr} \), both ligands exhibited the same sense of stereoselectivity, as would be expected by the models outlined in Figures 4.27 and 4.28. In these models, both ligands have the same twist sense, with the equatorial phenyl groups blocking the same quadrants (Figure 4.27). With bulky groups, such as \(t\text{-Bu and SiMe}_3 \), however, the (S)-BINAP- and (S,S)-chiraphos-based catalysts give the opposite stereoselectivity (Figure 4.29). Assuming that the mechanisms are the same, the opposite facial selectivity suggests that the more-stable diastereomer of the acyl-hydride complex in the BINAP system becomes the less-stable diastereomer with the chiraphos catalyst.

Although the structures of the relevant intermediates are unknown, based on the ground-state crystal structures and the production of opposite enantiomers of the product with these catalysts, it has been suggested that the position of the axial phenyl groups in chiraphos, which are not directed away from the metal center to the same extent as in BINAP, cause greater steric interactions with the \(t\text{-Bu group (Figure 4.26) }\). Admittedly, however, it is surprising that what is perceived to be a small difference in ligand conformation results in formation of the opposite enantiomer of the product.

![Figure 4.28. Front view of (S,S)-chiraphos with pseudoaxial (a) and pseudoequatorial (e) phenyl groups labeled.](image)

![Figure 4.29. Comparison of the enantioselectivities between BINAP and chiraphos catalysts in the hydroacylation reaction.](image)
In examples with R = ketone or ester, it is possible that the carbonyl of the R group can undergo different secondary interactions with the (chiraphos)Rh- and (BINAP)Rh-based catalysts, resulting in formation of the opposite enantiomer. Comparisons of entries 1–4 in Figure 4.29 serve as reminders that subtle differences in conformations of chiral ligands can result in substantial changes in enantioselective reactions.

4.4.3 TADDOL-Based Complexes

A family of ligands that has frequently been employed in asymmetric catalysis with excellent results is the tartaric acid-based TADDOL ligands (Figure 4.30). Following the introduction of the parent TADDOL ligand, a large number of analogs with different aromatic substituents and ketal moieties were introduced.71 TADDOL-based catalysts have found applications in a variety of Lewis acid catalyzed enantioselective reactions.71 Upon deprotonation, the ligands bind well to early transition metals, forming strong M–O bonds72 in the resulting TADDOLate complexes (Figure 4.30).

The conformational behavior in these ligands is similar to BINAP and chiraphos as outlined above. Based on the X-ray structural studies of unbound TADDOL ligands and of metal-bound TADDOLate complexes (Figure 4.31),73,74 the features that make these ligands exceptional have been surmised. Upon coordination of TADDOL to metals, a trans-fused bicyclo[5.3.0]decane ring system results. The stereocenters of the dioxolane ring are too distant from the metal center in TADDOLate complexes to directly impact the enantioselectivity. Nevertheless, they impart a strong conformational preference on the adjacent metallacycle, positioning the diastereotopic aromatic groups such that they assume a pseudoaxial/pseudoaxial arrangement. The pseudoaxial phenyl groups are positioned antiperiplanar to the neighboring dioxolane C–H bonds. In this fashion, the asymmetry of the stereogenic centers is relayed forward, toward the metal and the substrate-binding sites. There are some important differences, however, between the TADDOL and BINAP ligand systems. In the case of BINAP, the diastereotopic aryl groups are attached to the metal-bound phosphorus centers, while in TADDOL, these groups are bonded to the adjacent carbons. As a result, the aryl groups of the TADDOLate ligands are further removed from the metal, and the pseudoequatorial phenyl groups do not extend past the metal, as they do in BINAP complexes. Thus, it is the pseudoaxial aryl groups that are believed to be the dominant stereocontrolling element in TADDOL.75

![Figure 4.30](image-url)
Early examples of applications of TADDOL ligands in asymmetric catalysis were centered on the catalytic asymmetric addition of alkyl groups to aldehydes and the asymmetric Diels–Alder reaction, both using (TADDOLate)Ti-based complexes as the Lewis acids. The rapid exchange of alkoxide ligands and the notorious propensity of early metal alkoxides to aggregate through the formation of bridging alkoxides complicate studies of alkoxide-based catalysts.

The story of the (TADDOLate)Ti-catalyzed Diels–Alder reaction nicely illustrates a number of important points about the challenges of elucidating details of reaction
mechanisms and the transmission of asymmetry. Although the mechanism of this Lewis acid catalyzed process has been extensively investigated, some controversy remains about the geometry of the active substrate–catalyst adduct. In the reaction of the N-acyloxazolidinone with cyclopentadiene in the presence of (R,R-TADDOLate)TiCl$_2$, the expected *endo* adduct predominates with the (S)-configuration ([Figure 4.32]).79 In this process, the dienophile is believed be to activated by chelation to titanium, giving rise to an octahedral substrate–catalyst adduct. In support of this binding mode, an X-ray crystallographic study of a substrate–catalyst adduct showed the substrate chelating to titanium. In the structure, the oxygens of the TADDOLate ligand and the coordinated substrate were located in the equatorial plane and the mutually trans chlorides were axial ([Figure 4.33]).74 It was proposed that this adduct was the reactive intermediate that led directly to product on reaction with the diene.74,80,81 Because the reactive C–C double bond of the dienophile is distant from the chiral environment of the TADDOLate ligand in this complex, it was unclear how the chiral ligand could bias the facial selectivity in the Diels–Alder cycloaddition. Furthermore, in the geometry of the substrate adduct in the crystal structure, the carbonyl oxygens of the dieneophile are each trans to the basic, electron-donating alkoxides of the TADDOLate ligand. This geometrical arrangement results in a low degree of activation of the substrate. Stronger activation would be expected if the carbonyl oxygen adjacent to the reactive double bond were trans to chloride.

![Figure 4.33. Structure of the (TADDOLate)TiCl$_2$ bound to the substrate.](image-url)
Skepticism about the intermediacy of this adduct inspired further investigations into the solution behavior of the catalyst–substrate adduct in this reaction. High-level quantum-chemical calculations were also employed to probe the degree of activation of the substrate with different arrangements of the ligands on the octahedral titanium center. Analysis of the coordination modes of the substrate to the titanium center indicates that there are five possible geometries for this adduct, as illustrated in Figure 4.34. The bold vertical ligands in these structures represent the axial phenyl groups of the TADDOLate ligand. In isomer A, all of the oxygens lie in the equatorial plane. Diastereomers B and C have the carbonyl oxygen adjacent to the double bond trans to chloride while in D and E it is trans to a TADDOLate oxygen. In-depth NMR studies of (TADDOLate)TiCl₂ and the substrate indicated that only three of the five possible diastereomers were present in solution in a ratio of 70:24:6. The major diastereomer in solution, A (Figure 4.34), was that observed in the crystal structure and calculated to be the most stable. By positioning the TADDOLate ligand and the substrate in the equatorial plane, nonbonded interactions are minimized.

Experimental evidence into the precise geometry of the two less-abundant substrate–catalyst adducts was inconclusive. Perhaps more important than the geometries of the ground-state structure of these adducts is the degree of activation of the

Figure 4.34. Five possible binding modes of the N-acyloxazolidinone to [(R,R)-TADDOLate]TiCl₂. The bold lines represent the pseudoaxial aryl groups of the TADDOLate ligand.
substrate by the titanium in geometries A–E in Figure 4.34, and hence their relative reactivity. High-level calculations on model systems predict that the bound substrate exhibits the greatest degree of activation in geometries B and C, because the carbonyl flanking the olefin is trans to the weakly donating chloride. The substrate in complexes D and E is predicted to be less reactive than in B and C, but more reactive than A. Thus, although A is the most-stable diastereomer, as reflected in the high solution concentration and in the theoretical studies, it is believed to be the least reactive.

A plausible scenario for the reaction would involve reversible binding of the substrate to the titanium center. It has been found that exchange between bound and free substrate with (TADDOLate)TiCl$_2$ has a low barrier (15 kcal/mol) and proceeds via a dissociative pathway. This exchange is much faster than the cycloaddition, which is the stereoselectivity- and rate-determining step. Based on the data outlined above, it has been proposed that the reaction falls under Curtin–Hammett conditions (see Section 2.5). The reaction is funneled through a less-stable substrate–catalyst adduct, because of the greater reactivity of this intermediate and the fast equilibration of the diastereomeric substrate adducts.

In the substrate adducts B and C in Figure 4.34, the Si face is shielded by the pseudoaxial TADDOLate aryl group and the attack of the diene takes place from the Re face, as shown in Figure 4.35.

This example illustrates several important points concerning the study of catalytic asymmetric reactions, including: 1) the way in which different arrangements of the ligands on the metal generate diastereomeric complexes that are chiral at the metal, 2) how different catalyst–substrate geometries exhibit unequal reactivities, and 3) how reactivity can be controlled by the Curtin–Hammett principle. It also demonstrates the application of a variety of experimental and computational tools to gain insight into various aspects of a reaction mechanism.

Figure 4.35. A possible transition state for the asymmetric Diels–Alder reaction where attack of the cyclopentadiene takes place on the α-carbon Re face of the dienophile, along the Ti–Cl axis.
4.5 Environments from Ligands That Form Diastereotopic Complexes

One of the challenges in the synthesis of chiral ligands is often the resolution of the components from which the ligand is assembled. It is frequently the case that resolutions of enantiomers is the most time-consuming step in the iterative cycle of catalyst screening, which involves the synthesis of new ligands, the preparation of catalysts, and the screening and evaluation of new catalysts. Therefore, if ligands can be designed such that a single stereocenter in the unbound ligand controls the generation of subsequent ligand stereocenters on binding to the metal, the number of stereocenters in the ligand–metal adduct can be increased, without additional resolutions. Examples of this include selective coordination of diastereotopic lone pairs of the ligand to the metal, coordination of diastereotopic groups, and binding of the ligand in a diastereoselective fashion, such that the metal center becomes chiral. Furthermore, as outlined below, this interaction can serve to reduce the degrees of rotational freedom within the metal–ligand scaffold, thus extending and rigidifying the asymmetric environment of the catalyst.

4.5.1 Coordination of Diastereotopic Lone Pairs

The development of new enantioselective catalysts is, in part, dependent on the discovery and identification of innovative methods to transfer chirality from the catalyst to the substrate. A powerful method for catalyst development that has rarely been employed is diastereoselective binding of ligands to metals. In the process of binding the ligand to the metal, new stereogenic centers are formed either on the ligand or at the metal center. The diastereoselective coordination of an sp^3 hybridized lone pair on nitrogen or sulfur, for example, can increase the number of stereogenic centers upon coordination of the ligand.

Chiral diamines have been used in combination with zinc as catalysts for the asymmetric hydrosilylation of ketones with polymethylhydrosiloxane, $[-\text{SiMe(H)O}]-_n$. The precatalysts for this reaction were readily formed on combining diamines and dimethylzinc (Figure 4.36). In this reaction, the catalyst, which is proposed to be $(\text{diamine})\text{ZnH}_2$, delivers hydride to the carbonyl carbon, resulting in a zinc alkoxide. The alkoxide reacts with the Si–H bonds of the polymer to generate a silyl ether, which undergoes hydrolysis on isolation to form the alcohol.

When the reduction of acetophenone was performed using catalyst derived from diamines A–C (Table 4.1) and dimethylzinc, the (R)-alcohol product was observed. Coordination of A to dimethylzinc results in formation of a five-membered metallacycle with fewer degrees of freedom than the six- or seven-membered metallacycles formed from B and C. When the short-chain ligand N,N'-ethylenebis(1-phenylethylamine) (A) was bound to dimethylzinc, the resulting complex showed
that stereochemical information in the chiral \(N\)-phenylethyl groups was effectively relayed to the nitrogen centers, which are rendered configurationally stable upon coordination. The X-ray crystal structure of this complex is illustrated in Figure 4.37, where the configuration of the nitrogens are \(S\). The stereogenic nitrogen centers are held in close proximity to the zinc, and have a significant impact on the enantioselectivity of the catalyst (79% enantioselectivity, Table 4.1). Increasing the tether length of the diamine backbone results in poor control of the configuration of the coordinating nitrogens, giving rise to diastereomeric zinc complexes. The mixture of diastereomers exhibits low levels of enantioselectivity in the asymmetric reaction (<17% ee). Interestingly, the dimethylzinc complex of chiral diimine \(D\) was also shown to catalyze the reaction, but it gave the reduced product with the opposite absolute configuration in modest enantioselectivity (48% ee, Table 4.1). In this case, the nitrogen atoms in diimine \(D\) are \(sp^2\) hybridized and the side chains are the only groups responsible for controlling the transfer of asymmetry in the reaction.
4.5.2 Binding of Diastereotopic Groups

Coordination of a diastereotopic atom to a coordinatively unsaturated metal can be important in enantioselective catalysis with many ligands. For example, bis(sulfonamide)-based catalysts can be highly active and enantioselective in a number of reactions, including the asymmetric alkylation of aldehydes (Equation 4.5).89,90 This reaction allows preparation of functionalized secondary alcohols with excellent levels of enantioselectivity.91

Table 4.1. Enantioselective reduction of ketones by polymethylhydrosiloxane in the presence of chiral zinc catalysts

<table>
<thead>
<tr>
<th>L*</th>
<th>Yield (%)</th>
<th>ee % (configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>75 (R)</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>5 (R)</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>17 (R)</td>
</tr>
<tr>
<td>D</td>
<td>98</td>
<td>48 (S)</td>
</tr>
</tbody>
</table>

\textbf{Equation 4.5}

\[
\text{Et}_2\text{Zn} + \text{Ti(O-i-Pr)}_4 + \text{RCHO} \rightarrow \text{OH} + \text{NHSO}_2\text{CF}_3
\]

\[
\text{R} = \text{Ph, PhCH=CH, PhCH}_2\text{CH}, n-\text{C}_8\text{H}_{11}
\]

Titanium complexes of the bis(sulfonamide) ligands have been proposed to be the active species in this reaction.89,90,92,93 X-ray structure studies show long dative bond-
ing interactions between one of the diastereotopic oxygen atoms on each sulfonamide group and titanium. This Ti–O(sulfonyl) interaction causes the sulfur atoms to be stereogenic and presumably rigidifies the \(C_2 \)-symmetric ligand scaffold, as seen in Figure 4.38. In a sense, coordination of one of the diastereotopic sulfonyl oxygens to titanium extends the chiral environment of the ligand.

Bis(sulfonamide) ligands are also important catalyst components in other reactions, including the asymmetric amination of \(N \)-acyloxazolidinones with magnesium, the asymmetric cyclopropanation of allylic alcohols with zinc, and the asymmetric Diels–Alder reaction with aluminum. Magnesium bis(sulfonamido) complexes are Lewis acidic and presumably also coordinate the sulfonyl oxygens. Evidence for such interactions is found in related systems. It is unlikely, however, that aluminum and especially zinc complexes of the bis(sulfonamide) ligands will bind the sulfonyl oxygens. In these systems, conformational gearing of the sulfonyl group with the chiral ligand backbone may extend the asymmetric environment, causing the high levels of enantioselectivity observed with these catalysts.

4.6 Electronic Asymmetry of Coordination Sites

Another example of a family of ligands that form an additional stereocenter upon coordination is the phosphorus-sulfur-based ligands in Figure 4.39. These ligands have been successfully employed in the asymmetric allylation with palladium and the asymmetric hydrogenation (Equation 4.6) and hydrosilylation reactions with rhodium.
Metals bind to these ligands in a bidentate fashion, coordinating phosphorus and one of the diastereotopic lone pairs on sulfur (Figure 4.39). The resultant diastereomers (with the S-R oriented up and S-R oriented down) can readily interconvert by sulfur inversion or detachment of sulfur and re-coordination. The degree of steric interaction between R$_\alpha$ and the sulfur-substituent R controls the extent to which the metal preferentially binds one of the diastereotopic lone pairs over the other and, therefore, the orientation of the S-R. The direct attachment of the stereogenic sulfur center to the metal, and its proximity to the substrate-binding site, make control of the orientation of the S-R substituent crucial to the effective stereochemical communication between the catalyst and the substrate. It has been found that the sulfur substituent is disposed in a pseudoaxial position to avoid nonbonded interactions with the R$_\alpha$ substituent, although electronic effects cannot be ruled out.108,109 For bulky sulfur substituents, such as i-Bu, this group then influences the orientation of the P-phenyl groups. To minimize interactions between the sulfur substituent and the neighboring P-phenyl, the cis P-phenyl adopts an edge-on conformation, causing the remaining P-phenyl group to adopt a face-on orientation.109,110

An additional feature of mixed heteroatom donor ligands, such as the P-S-ligand in Figure 4.39, is that they electronically differentiate their respective trans binding
sites. In this case, the phosphorus ligand is a stronger trans donor than sulfur, making ligand Y more labile than ligand X (Figure 4.39). The trans effect will impact how chelating substrates bind, with the weakest trans donor opposite the strongest.

Using this P-S-ligand system, a detailed study of the mechanism of the asymmetric hydrogenation was undertaken. The catalyst–substrate adduct was independently synthesized and characterized by X-ray crystallography. A drawing of the structure is illustrated in Figure 4.40. By 1H and 31P NMR spectroscopy only a single diastereomer was observed in solution out of the four possibilities.

Beginning with the diastereomer in the crystal structure (A, Figure 4.41), the unobserved diastereomers can be drawn by reversing the positions of the carbonyl and double bond (B) and coordination of the opposite face of the olefin (C and D).

The observed diastereomer is favored by a combination of the steric constraints of the bound ligand and the electronic factors caused by the unequal trans influence of the phosphorus and sulfur donors. The bulky sulfur substituent and the neighboring edge-on aryl group block the lower two quadrants around the metal center, leaving the upper quadrants sterically unencumbered (Figure 4.42). The left half and right half of the diagram are electronically inequivalent by virtue of the differing trans influence of the phosphorus and sulfur, which favor binding the weaker trans donor of the substrate opposite the strongly donating phosphorus center. The trans influence is represented by the checkered regions of the quadrant diagram. In the substrate, the C–C double bond has a stronger trans influence than the carbonyl lone pair and

Figure 4.40. Drawing of the intermediate formed on coordination of the substrate to rhodium (based on an X-ray crystal structure of this complex).

Figure 4.41. Possible diastereomers of the substrate coordinated to (P-S)Rh$^+$ moiety (Figure 4.40). Diastereomer A is predicted to be the most stable and is observed in the crystal structure.
will prefer to bind opposite the weaker sulfur donor (Figure 4.42) With this system, the stereochemistry of the catalyst–substrate complex correlates with the observed stereochemistry of the reduced product. As discussed in Section 2.5, this is not always the case in asymmetric hydrogenation reactions.

Like the (BINAP)Ru-catalyzed hydrogenation of β-keto esters, the mechanism is proposed to involve initial loss of solvent ligands, chelation of the substrate as described above, followed by oxidative addition of H_2 (Figure 4.43). Note that in the oxidative-addition product, the ligand with the strongest trans influence (phosphorus and the hydrides) are positioned trans to the three weakest donors. In intermediate B, the olefin is correctly aligned for the migratory-insertion step, which establishes the product stereochemistry. The resultant alkyl hydride (C) undergoes reductive

![Figure 4.42](image1.png)

Figure 4.42. Model for the occupied space and electronic effects in the rhodium complex of a P-S-chelating ligand. The darker areas are occupied by the ligand. The checkered regions lines indicate the binding site trans to the strong trans influence of the phosphine ligand.

![Figure 4.43](image2.png)

Figure 4.43. Proposed mechanism of the (P-S)Rh$^{+}$-catalyzed hydrogenation of α-acylaminoacrylates.
elimination to form the stereocenter. Subsequent dissociation of the product, which does not bind well to the rhodium, then occurs.

To recap, the transmission of asymmetry in this system is dominated by the orientation of the S-R substituent, which is, in turn, dictated by the adjacent stereocenter. The orientation of the S-R group further biases the neighboring cis P-phenyl substituent. To minimize the transannular interaction, the cis P-phenyl orients an edge toward the substrate binding site, sterically blocking this quadrant. Additionally, the trans influence dictates diastereoselectivity in substrate binding and the oxidative addition of dihydrogen.

4.7 Steric Bias of Configurationally Dynamic Ligand Stereocenters

4.7.1 Ligands with Chiral Relay Groups Not Directly Connected to the Metal

A clever catalyst design based on stereochemically dynamic functional groups employs the dihydropyrazole moiety, where a fixed stereocenter controls the configuration of two fluxional nitrogen stereocenters (Figure 4.44). The stereogenic nitrogen bearing the CH2R substituent is remote, but exhibits a marked impact on the catalyst enantioselectivity. The stereochemistry of the N-methyl group of the amino alcohol is anti to the adjacent stereocenter to avoid an unfavorable eclipsing interaction. Data from reactivity studies suggest that the ligand is bound in a tridentate fashion and likely adopts a meridinal geometry as shown in Figure 4.44.

Application of these complexes in the asymmetric Diels–Alder reaction was explored to evaluate the influence of the substituent R on the enantioselectivity of the catalyst (Figure 4.45). The results of this study suggest that the size of the R group plays a crucial role in the enantioselectivity of the catalyst (Figure 4.45). As the size

![Figure 4.44](image-url)
of the remote substituent R is increased from methyl to 1-naphthyl, the enantioselectivity of the product rises from 50% to > 90% ee for both diastereomeric products. From these data, it is clear that the size of the stereochemically labile NCH₂R group is the primary determinant of the degree of facial selectivity.

A proposed model to rationalize the role of the stereolabile NCH₂R group and the enantioselectivity is illustrated in Figure 4.46. The dieneophile, shown in bold, is bound in a bidentate fashion. A reasonable assumption is that the N-acyl moiety of the substrate will bind in the axial position on the face opposite the pseudo-equatorial phenyl. As a result, the CH₂R group will likely be directed downward to reduce nonbonded interactions between the relay substituent and the substrate. To minimize steric strain between one of the geminal dimethyl groups and the chiral relay, the CH₂R group is expected to be oriented toward the bound substrate (Figure 4.46). In this conformation the naphthyl group shields the Re face of the substrate, consistent with the observed sense of stereoselection. One advantage of the catalyst possessing stereochemically dynamic groups is that several ligands can often be constructed.
from a single resolved starting material, thus permitting rapid assembly of a family of ligands.111

4.7.2 Catalysts That Are Chiral at the Metal Center

One of the guiding principles in the design of asymmetric catalysts is that the metal is in a chiral environment. As we have seen, this can be accomplished in several ways, including projection of stereochemical information from remote centers toward the metal by the conformational preferences of the ligand–metal adduct or, at the other extreme, positioning the stereocenters in close proximity to the metal center. This latter strategy can be taken one step further by designing catalysts such that the metal center is a stereogenic center.112,113 The synthesis of compounds where the sole chiral element is the metal center is very difficult, and is an area that remains to be developed (see Section A.1.1.b). Less difficult, but still tricky, is the synthesis of catalysts in which a chiral ligand binds to the metal center, causing the metal to become a stereocenter. The challenge is maintaining the stereochemical integrity of the catalyst over the course of the reaction, because the coordination number of the metal inevitably changes, providing an opportunity for the stereochemistry of the metal to scramble. As we will see in Chapter 6, use of diastereomeric catalysts can complicate optimization of asymmetric processes. However, if the energy difference between the diastereomeric catalysts is sufficiently large, thermodynamics may insure that only a single diastereomer is generated.

Reaction of dimeric \([(\eta^6\text{-arene})MCl_2]_2\) (\(M = \text{Ru, Os}\)) with the PO ligand BINPO and NaSbF\(_6\) resulted in formation of \([(\eta^6\text{-arene})MCl(BINAPO)]\[SbF_6\]^\text{−}\), an 18-electron, coordinatively saturated complex (\textbf{Figure 4.47}). To facilitate access to an open

![Figure 4.47. The synthesis of diastereomeric BINAPO complexes of ruthenium and osmium. The metal can be considered pseudotetrahedral.](Image)
coordination site, the remaining chloride was removed by treatment with AgSbF₆ to give the dicationic aqua complex \([\{\eta^6\text{-arene}\}M(OH_2)(\text{BINAPO})][\text{SbF}_6]_2\). Analysis of the \(^{31}\text{P}\) and \(^1\text{H}\) NMR spectra of the ruthenium and osmium complexes indicated formation of a single diastereomer in each case.

These compounds were then used in the Lewis acid catalyzed asymmetric Diels–Alder reaction of cyclopentadiene with methacrolein, a monodentate dienophile (Figure 4.48). The enantioselectivities with both the osmium and ruthenium systems were excellent.¹¹⁴,¹¹⁵

The X-ray crystal structure of \([\{\eta^6\text{-arene}\}\text{OsCl(BINAPO)}\]⁺ is illustrated in Figure 4.49. Based on this structure, a catalyst–substrate adduct has been proposed, and a partial structure showing the arrangements of ligands around the metal center is illustrated in Figure 4.50. A transition state to explain the sense of enantioselectivity is illustrated on the bottom of Figure 4.50.

![Figure 4.48. Asymmetric Diels–Alder reactions catalyzed by osmium and ruthenium complexes of BINAPO.](image)

<table>
<thead>
<tr>
<th>Catalyst (mol%)</th>
<th>Configuration</th>
<th>ex:endo ratio</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os (4)</td>
<td>R_{Os}, S_{BINAPO}</td>
<td>98:2</td>
<td>93 (S)</td>
</tr>
<tr>
<td>Ru (10)</td>
<td>R_{Ru}, S_{BINAPO}</td>
<td>96:4</td>
<td>99 (S)</td>
</tr>
</tbody>
</table>

Figure 4.49. Structure of \([\{\eta^6\text{-arene}\}\text{OsCl(BINAPO)}\]⁺. The P–Os–O bond angle is 161.5°.
4.7.3 Ligands That Can Adopt Atropisomeric Conformations

Ligands with axial chirality, such as BINAP and BINOL, have been shown to form highly enantioselective catalysts with a variety of metals in many asymmetric transformations. Not only are these ligands extremely adept at inducing asymmetry in prochiral substrates, they also efficiently transfer asymmetry to stereochemically flexible groups within a ligand. The preparation of substituted derivatives of these popular ligands in enantiomerically pure form can be a laborious process, inspiring investigators to circumvent resolution of atropisomeric moieties, when possible. Below are some methods that have been successfully used in this context.

4.7.3.a Axial Chirality Induced in Backbone Biphenyl-Based Ligands

The binaphthyl ligand in Figure 4.51 possesses central chirality and a fixed chiral axis, whereas the biphenyl derivative has a conformationally mobile axis. 1H NMR spectra of the biphenyl ligand exhibit two diastereomeric complexes in approximately a 1:1 ratio that interconvert via rotation about the biphenyl axis. Addition of [(η⁵-1,3-diphenylallyl)PdCl]₂ (0.5 equivalent) could give up to four diastereomers—namely, two diastereomeric configurations of the chiral axis and two orientations of the 1,3-diphenylallyl ligand (Figure 4.52). Only two diastereomers were observed—one W- and one M-type allyl, both with the (S)-configuration of the chiral axis. The configuration of the chiral axis was assigned by observation of a negative Cotton effect at 250 nm in the CD spectrum. Thus, the central chirality...
causes the diastereomeric ligand conformations to have significantly different energies once coordinated to the (η₃-1,3-Ph₂allyl)Pd moiety.

Comparison of the binaphthyl and biphenyl ligands in Figure 4.51 was undertaken in the asymmetric allylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate (Figure 4.53) under conditions almost identical to those in Figure 4.10. Use of the binaphthyl ligand with the fixed (S)-chiral axis (R = i-Pr) gave 85% ee of the (S) product (Figure 4.53). The conformationally dynamic biphenyl ligand (R = i-Pr) exhibited very similar enantioselection [83% ee of the (S)-product], while the t-Bu derivative gave slightly higher enantioselectivity. Application of the diastereomeric binaphthyl ligand with the fixed (R)-chiral axis resulted in formation of the opposite enantiomer of the product with 90% ee. Several important conclusions can be drawn from these results. The advantage of the use of the dynamic biphenyl-derived ligand is that it gives slightly higher enantioselectivity than the more synthetically challeng-

Figure 4.51. A binaphthyl ligand with central chirality and a fixed chiral axis (top left) and a biphenyl ligand with central chirality and a conformationally dynamic axis (top right). Reaction with [(η₃-1,3-Ph₂-C₃H₃)PdCl] affords the complex with the (S)-chiral axis (also see Figure 4.52). The allyl moiety is removed for clarity.

Figure 4.52. The four possible diastereomeric allyl complexes. The allyl can have the M- or W-type orientation with respect to the Ph₂P---N ligand plane. The biphenyl-derived ligand can have the (S)- or (R)-axial chirality.
ing fixed binaphthyl ligand. The disadvantage of the dynamic chiral axis, however, is that only one of the diastereomeric combinations can be access [the (S)-central chirality induces only the (S)-axial chirality, Figure 4.51]. In this particular case, the ligand with (S)-central chirality and (R)-axial chirality (Figure 4.51) gave slightly higher enantioselectivity (90% ee, entry 4, Figure 4.53).

This approach has been applied successfully to other catalytic asymmetric reactions and will likely attract more attention in an effort to streamline ligand syntheses.

4.7.3.b Axial Chirality Induced in Pendant Biphenyl-Based Ligands

Diphosphite ligands A–D (Figure 4.54) have been used in the rhodium-catalyzed reduction of dimethylitaconate to afford chiral diesters. The phosphite ligands employed are composed of two groups, a nonracemic sugar-based backbone linker and BINOL-, biphenol-, or 2-naphthol-derived pendant groups. BINOL-derived ligands A and B provide diastereomers that differ in the relative configurations of the backbone and the binaphthyl groups. Ligands B and C (Figure 4.54) contain conformationally flexible groups that can undergo atropisomerization. These groups relay the stereochemistry of the ligand backbone toward the metal center. This process has a low barrier, insuring rapid interconversion of the diastereomeric ligands and, therefore, catalysts. Although three diastereomers of ligands B and C are possible, it is unlikely they will be present in equal amounts, because the stereochemistry of the biphenol moieties depends on their interaction with the chiral backbone. Ligand D contains 2-naphthoxy groups that cannot adopt atropisomeric conformations.

When (S)- or (R)-BINOL-based ligands (A and B) were employed, the enantioselectivities were very high, but the sense of enantioselection was opposite (Table 4.2). Axial chirality of the pendant groups is dominant in determining the configuration of the product. The magnitude of the enantioselectivities from A and B is similar, suggesting that the chiral linker has almost no impact on the catalyst enantioselectivity.
Employing biphenol-based ligand B, which possesses the conformationally flexible pendent moieties, gave intermediate enantioselectivity (39%) favoring the (S) product. It is possible that this ligand gives rise to diastereomeric catalysts that operate simultaneously in the reduction reaction. Conclusions about the proportions of the diastereomeric catalyst based on the enantioselectivity, however, is not possible, because the catalysts are likely to have different relative rates.

The highest enantioselectivities (97% ee) were obtained with ligand C substituted with methyl groups at the 3- and 3′-positions. The enantioselectivity was slightly higher than with ligands A₅ and A₆, based on the stereochemically fixed BINOL (Table 4.2). Direct comparison between ligands C, A₅, and A₆ is complicated due to the absence of the 3,3′-substituents in A₅ and A₆. It is interesting to note that the order of activity of the catalysts parallels their enantioselectivity: A₅ < A₆ < C. In the case of ligand D, which cannot adopt atropisomeric conformations, the product has low ee (21%).

The advantage of incorporating stereochemically dynamic groups into ligands allows one to create a ligand library based on a single chiral backbone. The drawback is that the optimal catalyst must be generated by screening a series of chiral ligands. As outlined in subsequent chapters, a more efficient method to develop asymmetric catalysts is based on the combination of chiral and achiral ligands. In this fashion, a single chiral ligand can be used to generate a family of catalysts.
4.7.3.c Axial Chirality Induced in Atropisomeric Amides

Almost all of the atropisomeric ligands (i.e., ligands that are chiral by virtue of hindered rotation) are biaryls. Examples that we have seen are BINAP and BINOL. These ligands are stable to racemization under typical reaction conditions. The use of other types of atropisomeric ligands is uncommon, in part due to difficulties in the synthesis of such ligands. Nonetheless, once this obstacle is overcome, the use of other types of atropisomeric ligands will likely be more common. An interesting strategy that takes advantage of atropisomeric conformations has been employed in the asymmetric allylation with palladium. In this system, the central chirality of a fixed stereocenter biases the conformation of a stereochemically dynamic atropisomeric amide.127,128

As illustrated in Figure 4.55, use of the atropisomeric amide-based phosphine ligand in the palladium-catalyzed allylic alkylation with dimethyl malonate gave 85% ee. Although no structural information has been reported concerning the (π-allyl)Pd complex in the reaction, NMR data suggest the ligand is bidentate, coordinating to the palladium through the phosphorus and amide-carbonyl oxygen. In this adduct, the extant carbon stereochemistry will influence the disposition of the axial chirality of the amide, as well as the orientation of the diastereotopic P-phenyl groups (see Section 4.3.2).

The central chirality of this ligand is sufficiently removed from the metal center that it is unlikely to be directly responsible for the excellent control of enantioselectivity in the allylation reaction. It is more plausible that the transmission of asymmetric induction is relayed through the axial conformation of the amide and the orientation of the diastereotopic P-phenyl groups.110

4.7 Steric Bias of Configurationally Dynamic Ligand Stereocenters

Table 4.2. Enantioselectivities in the asymmetric hydrogenation of dimethylitaconate with catalysts based on ligands A–D (Figure 4.54).

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Conversion at 20 h (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A<sub>S</sub></td>
<td>> 99</td>
<td>88 (S)</td>
</tr>
<tr>
<td>A<sub>R</sub></td>
<td>> 99</td>
<td>95 (R)</td>
</tr>
<tr>
<td>B</td>
<td>74</td>
<td>39 (S)</td>
</tr>
<tr>
<td>C</td>
<td>> 99</td>
<td>97 (R)</td>
</tr>
<tr>
<td>D</td>
<td>65</td>
<td>21 (S)</td>
</tr>
</tbody>
</table>

04_5032.qxp 6/26/08 2:11 PM Page 155
4.8 Induced Asymmetry in the Substrate

4.8.1 Diastereomeric Complexes with Prochiral Substrates

A similar chelation of a sulfonyl oxygen to that in Section 4.5.2 was proposed based on density functional theory calculations in a study of the copper-catalyzed aziridination of alkenes using [N-(p-toluenesulfonyl)imino]phenyliodinane (PhI=NSO2Tol) as the nitrene source (Figure 4.56). In systems employing the bisoxazoline and diimine ligands, the reaction is believed to proceed through a Cu(I)/Cu(III) couple, and evidence for an intermediate copper nitrene has been presented.

As illustrated in Figure 4.57, coordination of the sulfonyl oxygen gives rise to diastereomeric intermediates differing in the configuration at sulfur. The calculations suggest that the sulfonyl oxygen remains bound to copper during the formation of the N–C bonds. Although the impact of the stereogenic sulfur center has not been in-
vestigated, it is likely to be significant, based on its proximity to the reactive nitrogen of the nitrene.

4.8.2 Substrates with Chiral Relays

We have seen examples where the chiral metal–ligand adduct controls the attack of a reagent on a bound substrate, and examples in which the catalyst controls the binding of a substrate prochiral face in the enantioselectivity-determining step. A distinct and ingenious approach involves transmission of stereochemical information from a chiral catalyst to a stereolabile center in the substrate, termed a chiral relay, which then controls the stereochemistry of attack at that substrate by an external reagent.133

An example of a chiral relay built into the substrate is illustrated in Figure 4.58. In this approach, a rapidly racemizing amino group is incorporated into the substrate. The role of the asymmetric catalyst is to bind the substrate and temporarily transform the stereochemically labile nitrogen into a chiral auxiliary. In turn, this stereocenter directs the approach of the incoming reagent.

These substrates were used in asymmetric Diels–Alder reaction catalyzed by the now familiar bisoxazoline–copper(II) complexes. The substrates for this reaction are butenoylpyrazolidinones having different \(N \)-alkyl relays, \(R \) (Figure 4.59). Two routes to coordination and activation of the substrate can be envisioned. The bound substrate can undergo epimerization and equilibrate to the lower-energy diastereomer or

\[
\begin{align*}
\text{Figure 4.57.} & \text{ Diastereomers formed on coordination of the sulfonyl oxygen in the intermediate nitrene proposed for the aziridination of olefins.} \\
\end{align*}
\]

\[
\begin{align*}
\text{Figure 4.58.} & \text{ a)} \text{ Nitrogen inversion racemizes the substrate. b)} \text{ Diastereomeric substrate–catalyst adducts can epimerize through nitrogen inversion. These diastereomers may be very different in energy.}
\end{align*}
\]
one enantiomer of the racemizing substrate can selectively bind to the chiral catalyst before activation (Figure 4.58).

In this study, a comparison was made between the relay group on the substrate and the enantioselectivity (Figure 4.59). As progressively larger chiral relay groups were used, the enantioselectivity increased. The observed ee range (8–92%) clearly indicates that the enantioselectivity is highly dependent on the size of the chiral relay. Furthermore, the large variation in enantioselectivity suggests that the bisoxazoline ligand is not solely responsible for the enantioselectivity. It was also demonstrated that the enantioselectivities with the most efficient chiral relays were independent of the substituents on C2-symmetric bisoxazoline ligands. This evidence also indicates that the chiral relay is responsible for control of the facial attack of the diene.133,134 Although the concept of chiral relays should be applicable to other types of substrates, it is not limited to incorporation into the substrate (see Section 4.7.1).

Concluding Remarks

The basic concepts describing the transmission of asymmetry in chiral catalysts have been outlined in this chapter, with a focus on ligand classes most commonly encountered in asymmetric catalysis. This foundation will be expanded in Chapter 5, which describes nonclassical two-point catalyst-substrate interactions. Some of the systems presented in this chapter have been extensively researched and the proposed models advanced are widely accepted. Other examples have been more recently introduced, yet hold considerable potential for both expansion and applications.

Understanding the fundamental concepts outlined herein is necessary, although not sufficient in and of itself, to rationally design new enantioselective catalysts. It is also valuable to know the basic characteristics of the reaction of interest. For example, how do the ligand and substrate bind to the metal, what is the metal coordination number, and what is the metal geometry? While determination of these features may
appear trivial, it is not always the case. Furthermore, to increase the likelihood of success, a detailed knowledge of the reaction mechanism is helpful. Even after achieving the level of understanding outlined above, the design of asymmetric catalysts is challenging, because the energy differences between diastereomeric transition states are inherently small and currently beyond our ability to reliably predict or calculate. In the end, there is no substitute for the iterative cycle of catalyst optimization, consisting of catalyst design, screening, analysis of the results, and catalyst modification. This process can be dramatically streamlined, however, with knowledge of the reaction mechanism and the mode of transmission of asymmetry from the catalyst to the substrate. As is so often true in chemistry, the age-old saying that “luck (success) favors the prepared mind” holds true.
Chapter Four · Asymmetric Induction in Enantioselective Catalysis

References

Chapter Four • Asymmetric Induction in Enantioselective Catalysis

(121) Superchi, S.; Casarini, D.; Laurita, A.; Bavoso, A.; Rosini, C. Induction of a Preferred Twist in a Biphenyl Core by Stereogenic Centers: A Novel Approach to the Absolute Configuration of 1,2- and
Chapter Four · Asymmetric Induction in Enantioselective Catalysis

